/* ----------------------------------------------------------------------- o32.S - Copyright (c) 1996, 1998, 2005 Red Hat, Inc. MIPS Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #define LIBFFI_ASM #include #include /* Only build this code if we are compiling for o32 */ #if defined(FFI_MIPS_O32) #define callback a0 #define bytes a2 #define flags a3 #define SIZEOF_FRAME (4 * FFI_SIZEOF_ARG + 2 * FFI_SIZEOF_ARG) #define A3_OFF (SIZEOF_FRAME + 3 * FFI_SIZEOF_ARG) #define FP_OFF (SIZEOF_FRAME - 2 * FFI_SIZEOF_ARG) #define RA_OFF (SIZEOF_FRAME - 1 * FFI_SIZEOF_ARG) .abicalls .text .align 2 .globl ffi_call_O32 .ent ffi_call_O32 ffi_call_O32: $LFB0: # Prologue SUBU $sp, SIZEOF_FRAME # Frame size $LCFI0: REG_S $fp, FP_OFF($sp) # Save frame pointer $LCFI1: REG_S ra, RA_OFF($sp) # Save return address $LCFI2: move $fp, $sp $LCFI3: move t9, callback # callback function pointer REG_S flags, A3_OFF($fp) # flags # Allocate at least 4 words in the argstack LI v0, 4 * FFI_SIZEOF_ARG blt bytes, v0, sixteen ADDU v0, bytes, 7 # make sure it is aligned and v0, -8 # to an 8 byte boundry sixteen: SUBU $sp, v0 # move the stack pointer to reflect the # arg space ADDU a0, $sp, 4 * FFI_SIZEOF_ARG jalr t9 REG_L t0, A3_OFF($fp) # load the flags word SRL t2, t0, 4 # shift our arg info and t0, ((1<<4)-1) # mask out the return type ADDU $sp, 4 * FFI_SIZEOF_ARG # adjust $sp to new args bnez t0, pass_d # make it quick for int REG_L a0, 0*FFI_SIZEOF_ARG($sp) # just go ahead and load the REG_L a1, 1*FFI_SIZEOF_ARG($sp) # four regs. REG_L a2, 2*FFI_SIZEOF_ARG($sp) REG_L a3, 3*FFI_SIZEOF_ARG($sp) b call_it pass_d: bne t0, FFI_ARGS_D, pass_f l.d $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args REG_L a2, 2*FFI_SIZEOF_ARG($sp) # passing a double REG_L a3, 3*FFI_SIZEOF_ARG($sp) b call_it pass_f: bne t0, FFI_ARGS_F, pass_d_d l.s $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args REG_L a1, 1*FFI_SIZEOF_ARG($sp) # passing a float REG_L a2, 2*FFI_SIZEOF_ARG($sp) REG_L a3, 3*FFI_SIZEOF_ARG($sp) b call_it pass_d_d: bne t0, FFI_ARGS_DD, pass_f_f l.d $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args l.d $f14, 2*FFI_SIZEOF_ARG($sp) # passing two doubles b call_it pass_f_f: bne t0, FFI_ARGS_FF, pass_d_f l.s $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args l.s $f14, 1*FFI_SIZEOF_ARG($sp) # passing two floats REG_L a2, 2*FFI_SIZEOF_ARG($sp) REG_L a3, 3*FFI_SIZEOF_ARG($sp) b call_it pass_d_f: bne t0, FFI_ARGS_DF, pass_f_d l.d $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args l.s $f14, 2*FFI_SIZEOF_ARG($sp) # passing double and float REG_L a3, 3*FFI_SIZEOF_ARG($sp) b call_it pass_f_d: # assume that the only other combination must be float then double # bne t0, FFI_ARGS_F_D, call_it l.s $f12, 0*FFI_SIZEOF_ARG($sp) # load $fp regs from args l.d $f14, 2*FFI_SIZEOF_ARG($sp) # passing double and float call_it: # Load the function pointer REG_L t9, SIZEOF_FRAME + 5*FFI_SIZEOF_ARG($fp) # If the return value pointer is NULL, assume no return value. REG_L t1, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp) beqz t1, noretval bne t2, FFI_TYPE_INT, retlonglong jalr t9 REG_L t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp) REG_S v0, 0(t0) b epilogue retlonglong: # Really any 64-bit int, signed or not. bne t2, FFI_TYPE_UINT64, retfloat jalr t9 REG_L t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp) REG_S v1, 4(t0) REG_S v0, 0(t0) b epilogue retfloat: bne t2, FFI_TYPE_FLOAT, retdouble jalr t9 REG_L t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp) s.s $f0, 0(t0) b epilogue retdouble: bne t2, FFI_TYPE_DOUBLE, noretval jalr t9 REG_L t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp) s.d $f0, 0(t0) b epilogue noretval: jalr t9 # Epilogue epilogue: move $sp, $fp REG_L $fp, FP_OFF($sp) # Restore frame pointer REG_L ra, RA_OFF($sp) # Restore return address ADDU $sp, SIZEOF_FRAME # Fix stack pointer j ra $LFE0: .end ffi_call_O32 /* ffi_closure_O32. Expects address of the passed-in ffi_closure in t4 ($12). Stores any arguments passed in registers onto the stack, then calls ffi_closure_mips_inner_O32, which then decodes them. Stack layout: 3 - a3 save 2 - a2 save 1 - a1 save 0 - a0 save, original sp -1 - ra save -2 - fp save -3 - $16 (s0) save -4 - cprestore -5 - return value high (v1) -6 - return value low (v0) -7 - f14 (le high, be low) -8 - f14 (le low, be high) -9 - f12 (le high, be low) -10 - f12 (le low, be high) -11 - Called function a3 save -12 - Called function a2 save -13 - Called function a1 save -14 - Called function a0 save, our sp and fp point here */ #define SIZEOF_FRAME2 (14 * FFI_SIZEOF_ARG) #define A3_OFF2 (SIZEOF_FRAME2 + 3 * FFI_SIZEOF_ARG) #define A2_OFF2 (SIZEOF_FRAME2 + 2 * FFI_SIZEOF_ARG) #define A1_OFF2 (SIZEOF_FRAME2 + 1 * FFI_SIZEOF_ARG) #define A0_OFF2 (SIZEOF_FRAME2 + 0 * FFI_SIZEOF_ARG) #define RA_OFF2 (SIZEOF_FRAME2 - 1 * FFI_SIZEOF_ARG) #define FP_OFF2 (SIZEOF_FRAME2 - 2 * FFI_SIZEOF_ARG) #define S0_OFF2 (SIZEOF_FRAME2 - 3 * FFI_SIZEOF_ARG) #define GP_OFF2 (SIZEOF_FRAME2 - 4 * FFI_SIZEOF_ARG) #define V1_OFF2 (SIZEOF_FRAME2 - 5 * FFI_SIZEOF_ARG) #define V0_OFF2 (SIZEOF_FRAME2 - 6 * FFI_SIZEOF_ARG) #define FA_1_1_OFF2 (SIZEOF_FRAME2 - 7 * FFI_SIZEOF_ARG) #define FA_1_0_OFF2 (SIZEOF_FRAME2 - 8 * FFI_SIZEOF_ARG) #define FA_0_1_OFF2 (SIZEOF_FRAME2 - 9 * FFI_SIZEOF_ARG) #define FA_0_0_OFF2 (SIZEOF_FRAME2 - 10 * FFI_SIZEOF_ARG) .text .align 2 .globl ffi_closure_O32 .ent ffi_closure_O32 ffi_closure_O32: $LFB1: # Prologue .frame $fp, SIZEOF_FRAME2, ra .set noreorder .cpload t9 .set reorder SUBU $sp, SIZEOF_FRAME2 .cprestore GP_OFF2 $LCFI4: REG_S $16, S0_OFF2($sp) # Save s0 REG_S $fp, FP_OFF2($sp) # Save frame pointer REG_S ra, RA_OFF2($sp) # Save return address $LCFI6: move $fp, $sp $LCFI7: # Store all possible argument registers. If there are more than # four arguments, then they are stored above where we put a3. REG_S a0, A0_OFF2($fp) REG_S a1, A1_OFF2($fp) REG_S a2, A2_OFF2($fp) REG_S a3, A3_OFF2($fp) # Load ABI enum to s0 REG_L $16, 20($12) # cif pointer follows tramp. REG_L $16, 0($16) # abi is first member. li $13, 1 # FFI_O32 bne $16, $13, 1f # Skip fp save if FFI_O32_SOFT_FLOAT # Store all possible float/double registers. s.d $f12, FA_0_0_OFF2($fp) s.d $f14, FA_1_0_OFF2($fp) 1: # Call ffi_closure_mips_inner_O32 to do the work. la t9, ffi_closure_mips_inner_O32 move a0, $12 # Pointer to the ffi_closure addu a1, $fp, V0_OFF2 addu a2, $fp, A0_OFF2 addu a3, $fp, FA_0_0_OFF2 jalr t9 # Load the return value into the appropriate register. move $8, $2 li $9, FFI_TYPE_VOID beq $8, $9, closure_done li $13, 1 # FFI_O32 bne $16, $13, 1f # Skip fp restore if FFI_O32_SOFT_FLOAT li $9, FFI_TYPE_FLOAT l.s $f0, V0_OFF2($fp) beq $8, $9, closure_done li $9, FFI_TYPE_DOUBLE l.d $f0, V0_OFF2($fp) beq $8, $9, closure_done 1: REG_L $3, V1_OFF2($fp) REG_L $2, V0_OFF2($fp) closure_done: # Epilogue move $sp, $fp REG_L $16, S0_OFF2($sp) # Restore s0 REG_L $fp, FP_OFF2($sp) # Restore frame pointer REG_L ra, RA_OFF2($sp) # Restore return address ADDU $sp, SIZEOF_FRAME2 j ra $LFE1: .end ffi_closure_O32 /* DWARF-2 unwind info. */ .section .eh_frame,"a",@progbits $Lframe0: .4byte $LECIE0-$LSCIE0 # Length of Common Information Entry $LSCIE0: .4byte 0x0 # CIE Identifier Tag .byte 0x1 # CIE Version .ascii "zR\0" # CIE Augmentation .uleb128 0x1 # CIE Code Alignment Factor .sleb128 4 # CIE Data Alignment Factor .byte 0x1f # CIE RA Column .uleb128 0x1 # Augmentation size .byte 0x00 # FDE Encoding (absptr) .byte 0xc # DW_CFA_def_cfa .uleb128 0x1d .uleb128 0x0 .align 2 $LECIE0: $LSFDE0: .4byte $LEFDE0-$LASFDE0 # FDE Length $LASFDE0: .4byte $LASFDE0-$Lframe0 # FDE CIE offset .4byte $LFB0 # FDE initial location .4byte $LFE0-$LFB0 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI0-$LFB0 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0x18 .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI2-$LCFI0 .byte 0x11 # DW_CFA_offset_extended_sf .uleb128 0x1e # $fp .sleb128 -2 # SIZEOF_FRAME2 - 2*FFI_SIZEOF_ARG($sp) .byte 0x11 # DW_CFA_offset_extended_sf .uleb128 0x1f # $ra .sleb128 -1 # SIZEOF_FRAME2 - 1*FFI_SIZEOF_ARG($sp) .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI3-$LCFI2 .byte 0xc # DW_CFA_def_cfa .uleb128 0x1e .uleb128 0x18 .align 2 $LEFDE0: $LSFDE1: .4byte $LEFDE1-$LASFDE1 # FDE Length $LASFDE1: .4byte $LASFDE1-$Lframe0 # FDE CIE offset .4byte $LFB1 # FDE initial location .4byte $LFE1-$LFB1 # FDE address range .uleb128 0x0 # Augmentation size .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI4-$LFB1 .byte 0xe # DW_CFA_def_cfa_offset .uleb128 0x38 .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI6-$LCFI4 .byte 0x11 # DW_CFA_offset_extended_sf .uleb128 0x10 # $16 .sleb128 -3 # SIZEOF_FRAME2 - 3*FFI_SIZEOF_ARG($sp) .byte 0x11 # DW_CFA_offset_extended_sf .uleb128 0x1e # $fp .sleb128 -2 # SIZEOF_FRAME2 - 2*FFI_SIZEOF_ARG($sp) .byte 0x11 # DW_CFA_offset_extended_sf .uleb128 0x1f # $ra .sleb128 -1 # SIZEOF_FRAME2 - 1*FFI_SIZEOF_ARG($sp) .byte 0x4 # DW_CFA_advance_loc4 .4byte $LCFI7-$LCFI6 .byte 0xc # DW_CFA_def_cfa .uleb128 0x1e .uleb128 0x38 .align 2 $LEFDE1: #endif