
email Package Reference
Release 3.0

Barry Warsaw

March 5, 2006

barry@python.org

Abstract

The email package provides classes and utilities to create, parse, generate, and modify email messages, con-
forming to all the relevant email and MIME related RFCs.

Contents

1 Introduction 1

2 email — An email and MIME handling package 2
2.1 Representing an email message. 2

Deprecated methods. 8
2.2 Parsing email messages. 9

FeedParser API. 9
Parser class API. 10
Additional notes. 11

2.3 Generating MIME documents. 11
Deprecated methods. 12

2.4 Creating email and MIME objects from scratch. 13
2.5 Internationalized headers. 14
2.6 Representing character sets. 16
2.7 Encoders . 19
2.8 Exception and Defect classes. 19
2.9 Miscellaneous utilities . 20
2.10 Iterators. 22
2.11 Package History. 23
2.12 Differences frommimelib . 24
2.13 Examples. 26

1 Introduction

Theemail package provides classes and utilities to create, parse, generate, and modify email messages, conforming
to all the relevant email and MIME related RFCs.

This document describes version 3.0 of theemail package, which is distributed with Python 2.4 and is available as a
standalone distutils-based package for use with Python 2.3.email 3.0 is not compatible with Python versions earlier

than 2.3. For more information about theemail package, including download links and mailing lists, seePython’s
email SIG.

The documentation that follows was written for the Python project, so if you’re reading this as part of the standalone
email package documentation, there are a few notes to be aware of:

• Deprecation and “version added” notes are relative to the Python version a feature was added or deprecated.

• If you’re reading this documentation as part of the standaloneemail package, some of the internal links to
other sections of the Python standard library may not resolve.

2 email — An email and MIME handling package

New in version 2.2.

Theemail package is a library for managing email messages, including MIME and other RFC 2822-based message
documents. It subsumes most of the functionality in several older standard modules such asrfc822 , mimetools ,
multifile , and other non-standard packages such asmimecntl . It is specificallynot designed to do any sending
of email messages to SMTP (RFC 2821) servers; that is the function of thesmtplib module. Theemail package
attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such MIME-related RFCs as RFC
2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of theemail package is that it splits the parsing and generating of email messages
from the internalobject modelrepresentation of email. Applications using theemail package deal primarily with
objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-arrange the contents,
etc. There is a separate parser and a separate generator which handles the transformation from flat text to the object
model, and then back to flat text again. There are also handy subclasses for some common MIME object types, and a
few miscellaneous utilities that help with such common tasks as extracting and parsing message field values, creating
RFC-compliant dates, etc.

The following sections describe the functionality of theemail package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is parsed
to produce the object structure of the email message, this structure is manipulated, and finally rendered back into flat
text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there, a
similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules that theemail package provides, the exception
classes you might encounter while using theemail package, some auxiliary utilities, and a few examples. For users
of the oldermimelib package, or previous versions of theemail package, a section on differences and porting is
provided.

See Also:

Modulesmtplib (section??):
SMTP protocol client

2.1 Representing an email message

The central class in theemail package is theMessage class; it is the base class for theemail object model.
Message provides the core functionality for setting and querying header fields, and for accessing message bodies.

Conceptually, aMessage object consists ofheadersandpayloads. Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or the
field value.

2 2 email — An email and MIME handling package

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be a
single envelope header, also known as theUnix-Fromheader or theFrom_ header. The payload is either a string in
the case of simple message objects or a list ofMessage objects for MIME container documents (e.g.multipart/* and
message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface for
accessing both the headers and the payload. It provides convenience methods for generating a flat text representation
of the message object tree, for accessing commonly used header parameters, and for recursively walking over the
object tree.

Here are the methods of theMessage class:

classMessage ()
The constructor takes no arguments.

as_string ([unixfrom])
Return the entire message flatten as a string. When optionalunixfromis True , the envelope header is included
in the returned string.unixfromdefaults toFalse .

Note that this method is provided as a convenience and may not always format the message the way you want.
For example, by default it mangles lines that begin withFrom . For more flexibility, instantiate aGenerator
instance and use itsflatten() method directly. For example:

from cStringIO import StringIO
from email.Generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

__str__ ()
Equivalent toas_string(unixfrom=True) .

is_multipart ()
ReturnTrue if the message’s payload is a list of sub-Message objects, otherwise returnFalse . Whenis_-
multipart() returns False, the payload should be a string object.

set_unixfrom (unixfrom)
Set the message’s envelope header tounixfrom, which should be a string.

get_unixfrom ()
Return the message’s envelope header. Defaults toNone if the envelope header was never set.

attach (payload)
Add the givenpayloadto the current payload, which must beNone or a list of Message objects before the
call. After the call, the payload will always be a list ofMessage objects. If you want to set the payload to a
scalar object (e.g. a string), useset_payload() instead.

get_payload ([i[, decode]])
Return a reference the current payload, which will be a list ofMessage objects whenis_multipart() is
True , or a string whenis_multipart() is False . If the payload is a list and you mutate the list object,
you modify the message’s payload in place.

With optional argumenti, get_payload() will return thei-th element of the payload, counting from zero, if
is_multipart() is True . An IndexError will be raised ifi is less than 0 or greater than or equal to the
number of items in the payload. If the payload is a string (i.e.is_multipart() is False) andi is given, a
TypeError is raised.

Optionaldecodeis a flag indicating whether the payload should be decoded or not, according to theContent-
Transfer-Encoding: header. WhenTrue and the message is not a multipart, the payload will be decoded if this
header’s value is ‘quoted-printable ’ or ‘ base64 ’. If some other encoding is used, orContent-Transfer-

2.1 Representing an email message 3

Encoding: header is missing, or if the payload has bogus base64 data, the payload is returned as-is (undecoded).
If the message is a multipart and thedecodeflag is True , thenNone is returned. The default fordecodeis
False .

set_payload (payload[, charset])
Set the entire message object’s payload topayload. It is the client’s responsibility to ensure the payload invari-
ants. Optionalcharsetsets the message’s default character set; seeset_charset() for details.

Changed in version 2.2.2:charsetargument added.

set_charset (charset)
Set the character set of the payload tocharset, which can either be aCharset instance (see
email.Charset), a string naming a character set, orNone. If it is a string, it will be converted to aCharset
instance. Ifcharsetis None, thecharset parameter will be removed from theContent-Type: header. Anything
else will generate aTypeError .

The message will be assumed to be of typetext/* encoded withcharset.input_charset . It will be
converted tocharset.output_charset and encoded properly, if needed, when generating the plain text
representation of the message. MIME headers (MIME-Version:, Content-Type:, Content-Transfer-Encoding:) will
be added as needed.

New in version 2.2.2.

get_charset ()
Return theCharset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note
that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also,
in dictionaries there is no guaranteed order to the keys returned bykeys() , but in aMessage object, headers are
always returned in the order they appeared in the original message, or were added to the message later. Any header
deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

__len__ ()
Return the total number of headers, including duplicates.

__contains__ (name)
Return true if the message object has a field namedname. Matching is done case-insensitively andnameshould
not include the trailing colon. Used for thein operator, e.g.:

if ’message-id’ in myMessage:
print ’Message-ID:’, myMessage[’message-id’]

__getitem__ (name)
Return the value of the named header field.nameshould not include the colon field separator. If the header is
missing,None is returned; aKeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field values
will be returned is undefined. Use theget_all() method to get the values of all the extant named headers.

__setitem__ (name, val)
Add a header to the message with field namenameand valueval. The field is appended to the end of the
message’s existing fields.

Note that this doesnot overwrite or delete any existing header with the same name. If you want to ensure that
the new header is the only one present in the message with field namename, delete the field first, e.g.:

4 2 email — An email and MIME handling package

del msg[’subject’]
msg[’subject’] = ’Python roolz!’

__delitem__ (name)
Delete all occurrences of the field with namenamefrom the message’s headers. No exception is raised if the
named field isn’t present in the headers.

has_key (name)
Return true if the message contains a header field namedname, otherwise return false.

keys ()
Return a list of all the message’s header field names.

values ()
Return a list of all the message’s field values.

items ()
Return a list of 2-tuples containing all the message’s field headers and values.

get (name[, failobj])
Return the value of the named header field. This is identical to__getitem__() except that optionalfailobj
is returned if the named header is missing (defaults toNone).

Here are some additional useful methods:

get_all (name[, failobj])
Return a list of all the values for the field namedname. If there are no such named headers in the message,
failobj is returned (defaults toNone).

add_header (name, value, ** params)
Extended header setting. This method is similar to__setitem__() except that additional header parameters
can be provided as keyword arguments.nameis the header field to add andvalueis theprimary value for the
header.

For each item in the keyword argument dictionaryparams, the key is taken as the parameter name, with un-
derscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter will be
added askey="value" unless the value isNone, in which case only the key will be added.

Here’s an example:

msg.add_header(’Content-Disposition’, ’attachment’, filename=’bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace_header (name, value)
Replace a header. Replace the first header found in the message that matchesname, retaining header order and
field name case. If no matching header was found, aKeyError is raised.

New in version 2.2.2.

get_content_type ()
Return the message’s content type. The returned string is coerced to lower case of the formmaintype/subtype. If
there was noContent-Type: header in the message the default type as given byget_default_type() will
be returned. Since according to RFC 2045, messages always have a default type,get_content_type()
will always return a value.

RFC 2045 defines a message’s default type to betext/plain unless it appears inside amultipart/digest container,
in which case it would bemessage/rfc822. If the Content-Type: header has an invalid type specification, RFC
2045 mandates that the default type betext/plain.

New in version 2.2.2.

2.1 Representing an email message 5

get_content_maintype ()
Return the message’s main content type. This is themaintype part of the string returned byget_content_-
type() .

New in version 2.2.2.

get_content_subtype ()
Return the message’s sub-content type. This is thesubtype part of the string returned byget_content_-
type() .

New in version 2.2.2.

get_default_type ()
Return the default content type. Most messages have a default content type oftext/plain, except for messages
that are subparts ofmultipart/digest containers. Such subparts have a default content type ofmessage/rfc822.

New in version 2.2.2.

set_default_type (ctype)
Set the default content type.ctypeshould either betext/plain or message/rfc822, although this is not enforced.
The default content type is not stored in theContent-Type: header.

New in version 2.2.2.

get_params ([failobj[, header[, unquote]]])
Return the message’sContent-Type: parameters, as a list. The elements of the returned list are 2-tuples of
key/value pairs, as split on the ‘=’ sign. The left hand side of the ‘=’ is the key, while the right hand side is the
value. If there is no ‘=’ sign in the parameter the value is the empty string, otherwise the value is as described
in get_param() and is unquoted if optionalunquoteis True (the default).

Optional failobj is the object to return if there is noContent-Type: header. Optionalheaderis the header to
search instead ofContent-Type:.

Changed in version 2.2.2:unquoteargument added.

get_param (param[, failobj[, header[, unquote]]])
Return the value of theContent-Type: header’s parameterparamas a string. If the message has noContent-Type:
header or if there is no such parameter, thenfailobj is returned (defaults toNone).

Optionalheaderif given, specifies the message header to use instead ofContent-Type:.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the
parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of the form(CHARSET,
LANGUAGE, VALUE). Note that bothCHARSETandLANGUAGEcan beNone, in which case you should
considerVALUEto be encoded in theus-ascii charset. You can usually ignoreLANGUAGE.

If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can collapse the
parameter value by callingemail.Utils.collapse_rfc2231_value() , passing in the return value
from get_param() . This will return a suitably decoded Unicode string whn the value is a tuple, or the
original string unquoted if it isn’t. For example:

rawparam = msg.get_param(’foo’)
param = email.Utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or theVALUEitem in the 3-tuple) is always unquoted,
unlessunquoteis set toFalse .

Changed in version 2.2.2:unquoteargument added, and 3-tuple return value possible.

set_param (param, value[, header[, requote[, charset[, language]]]])
Set a parameter in theContent-Type: header. If the parameter already exists in the header, its value will be
replaced withvalue. If the Content-Type: header as not yet been defined for this message, it will be set to
text/plain and the new parameter value will be appended as per RFC 2045.

Optionalheaderspecifies an alternative header toContent-Type:, and all parameters will be quoted as necessary
unless optionalrequoteis False (the default isTrue).

6 2 email — An email and MIME handling package

If optional charsetis specified, the parameter will be encoded according to RFC 2231. Optionallanguage
specifies the RFC 2231 language, defaulting to the empty string. Bothcharsetandlanguageshould be strings.

New in version 2.2.2.

del_param (param[, header[, requote]])
Remove the given parameter completely from theContent-Type: header. The header will be re-written in place
without the parameter or its value. All values will be quoted as necessary unlessrequoteis False (the default
is True). Optionalheaderspecifies an alternative toContent-Type:.

New in version 2.2.2.

set_type (type[, header][, requote])
Set the main type and subtype for theContent-Type: header.typemust be a string in the formmaintype/subtype,
otherwise aValueError is raised.

This method replaces theContent-Type: header, keeping all the parameters in place. Ifrequoteis False , this
leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).

An alternative header can be specified in theheaderargument. When theContent-Type: header is set aMIME-
Version: header is also added.

New in version 2.2.2.

get_filename ([failobj])
Return the value of thefilename parameter of theContent-Disposition: header of the message. If the header
does not have afilename parameter, this method falls back to looking for thename parameter. If neither
is found, or the header is missing, thenfailobj is returned. The returned string will always be unquoted as per
Utils.unquote() .

get_boundary ([failobj])
Return the value of theboundary parameter of theContent-Type: header of the message, orfailobj if either
the header is missing, or has noboundary parameter. The returned string will always be unquoted as per
Utils.unquote() .

set_boundary (boundary)
Set theboundary parameter of theContent-Type: header toboundary. set_boundary() will always quote
boundaryif necessary. AHeaderParseError is raised if the message object has noContent-Type: header.

Note that using this method is subtly different than deleting the oldContent-Type: header and adding a new one
with the new boundary viaadd_header() , becauseset_boundary() preserves the order of theContent-
Type: header in the list of headers. However, it doesnot preserve any continuation lines which may have been
present in the originalContent-Type: header.

get_content_charset ([failobj])
Return thecharset parameter of theContent-Type: header, coerced to lower case. If there is noContent-Type:
header, or if that header has nocharset parameter,failobj is returned.

Note that this method differs fromget_charset() which returns theCharset instance for the default
encoding of the message body.

New in version 2.2.2.

get_charsets ([failobj])
Return a list containing the character set names in the message. If the message is amultipart, then the list will
contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of thecharset parameter in theContent-Type: header
for the represented subpart. However, if the subpart has noContent-Type: header, nocharset parameter, or is
not of thetext main MIME type, then that item in the returned list will befailobj.

walk ()
Thewalk() method is an all-purpose generator which can be used to iterate over all the parts and subparts of a
message object tree, in depth-first traversal order. You will typically usewalk() as the iterator in afor loop;
each iteration returns the next subpart.

2.1 Representing an email message 7

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():
... print part.get_content_type()
multipart/report
text/plain
message/delivery-status
text/plain
text/plain
message/rfc822

Message objects can also optionally contain two instance attributes, which can be used when generating the plain
text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers, and the
first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because it falls
outside the standard MIME armor. However, when viewing the raw text of the message, or when viewing the
message in a non-MIME aware reader, this text can become visible.

Thepreambleattribute contains this leading extra-armor text for MIME documents. When theParser discov-
ers some text after the headers but before the first boundary string, it assigns this text to the message’spreamble
attribute. When theGenerator is writing out the plain text representation of a MIME message, and it finds the
message has apreambleattribute, it will write this text in the area between the headers and the first boundary.
Seeemail.Parser andemail.Generator for details.

Note that if the message object has no preamble, thepreambleattribute will beNone.

epilogue
The epilogueattribute acts the same way as thepreambleattribute, except that it contains text that appears
between the last boundary and the end of the message.

One note: when generating the flat text for amultipart message that has noepilogue(using the standard
Generator class), no newline is added after the closing boundary line. If the message object has anepi-
logueand its value does not start with a newline, a newline is printed after the closing boundary. This seems a
little clumsy, but it makes the most practical sense. The upshot is that if you want to ensure that a newline get
printed after your closingmultipart boundary, set theepilogueto the empty string.

defects
Thedefectsattribute contains a list of all the problems found when parsing this message. Seeemail.Errors
for a detailed description of the possible parsing defects.

New in version 2.4.

Deprecated methods

Changed in version 2.4: Theadd_payload() method was removed; use theattach() method instead.

The following methods are deprecated. They are documented here for completeness.

get_type ([failobj])
Return the message’s content type, as a string of the formmaintype/subtype as taken from theContent-Type:
header. The returned string is coerced to lowercase.

If there is noContent-Type: header in the message,failobj is returned (defaults toNone).

Deprecated since release 2.2.2.Use theget_content_type() method instead.

get_main_type ([failobj])
Return the message’smain content type. This essentially returns themaintypepart of the string returned by
get_type() , with the same semantics forfailobj.

8 2 email — An email and MIME handling package

Deprecated since release 2.2.2.Use theget_content_maintype() method instead.

get_subtype ([failobj])
Return the message’s sub-content type. This essentially returns thesubtypepart of the string returned byget_-
type() , with the same semantics forfailobj.

Deprecated since release 2.2.2.Use theget_content_subtype() method instead.

2.2 Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together viaattach() andset_payload() calls, or they can be created
by parsing a flat text representation of the email message.

The email package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you the rootMessage
instance of the object structure. For simple, non-MIME messages the payload of this root object will likely be a
string containing the text of the message. For MIME messages, the root object will returnTrue from its is_-
multipart() method, and the subparts can be accessed via theget_payload() andwalk() methods.

There are actually two parser interfaces available for use, the classicParser API and the incrementalFeedParser
API. The classicParser API is fine if you have the entire text of the message in memory as a string, or if the entire
message lives in a file on the file system.FeedParser is more appropriate for when you’re reading the message from
a stream which might block waiting for more input (e.g. reading an email message from a socket). TheFeedParser
can consume and parse the message incrementally, and only returns the root object when you close the parser1.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection between theemail package’s bundled parser and theMessage class,
so your custom parser can create message object trees any way it finds necessary.

FeedParser API

New in version 2.4.

The FeedParser provides an API that is conducive to incremental parsing of email messages, such as would be
necessary when reading the text of an email message from a source that can block (e.g. a socket). TheFeedParser
can of course be used to parse an email message fully contained in a string or a file, but the classicParser API may
be more convenient for such use cases. The semantics and results of the two parser APIs are identical.

TheFeedParser ’s API is simple; you create an instance, feed it a bunch of text until there’s no more to feed it, then
close the parser to retrieve the root message object. TheFeedParser is extremely accurate when parsing standards-
compliant messages, and it does a very good job of parsing non-compliant messages, providing information about how
a message was deemed broken. It will populate a message object’sdefectsattribute with a list of any problems it found
in a message. See theemail.Errors module for the list of defects that it can find.

Here is the API for theFeedParser :

classFeedParser ([factory])
Create aFeedParser instance. Optionalfactoryis a no-argument callable that will be called whenever a new
message object is needed. It defaults to theemail.Message.Message class.

feed (data)
Feed theFeedParser some more data.datashould be a string containing one or more lines. The lines can
be partial and theFeedParser will stitch such partial lines together properly. The lines in the string can have
any of the common three line endings, carriage return, newline, or carriage return and newline (they can even
be mixed).

1As of email package version 3.0, introduced in Python 2.4, the classicParser was re-implemented in terms of theFeedParser , so the
semantics and results are identical between the two parsers.

2.2 Parsing email messages 9

close ()
Closing aFeedParser completes the parsing of all previously fed data, and returns the root message object.
It is undefined what happens if you feed more data to a closedFeedParser .

Parser class API

The Parser provides an API that can be used to parse a message when the complete contents of the message are
available in a string or file. Theemail.Parser module also provides a second class, calledHeaderParser
which can be used if you’re only interested in the headers of the message.HeaderParser can be much faster in
these situations, since it does not attempt to parse the message body, instead setting the payload to the raw body as a
string.HeaderParser has the same API as theParser class.

classParser ([class[, strict]])
The constructor for theParser class takes an optional argumentclass. This must be a callable factory (such as
a function or a class), and it is used whenever a sub-message object needs to be created. It defaults toMessage
(seeemail.Message). The factory will be called without arguments.

The optionalstrict flag is ignored.Deprecated since release 2.4.Because theParser class is a backward
compatible API wrapper around the new-in-Python 2.4FeedParser , all parsing is effectively non-strict. You
should simply stop passing astrict flag to theParser constructor.

Changed in version 2.2.2: Thestrict flag was added. Changed in version 2.4: Thestrict flag was deprecated.

The other publicParser methods are:

parse (fp[, headersonly])
Read all the data from the file-like objectfp, parse the resulting text, and return the root message object.fp must
support both thereadline() and theread() methods on file-like objects.

The text contained infp must be formatted as a block of RFC 2822 style headers and header continuation lines,
optionally preceded by a envelope header. The header block is terminated either by the end of the data or
by a blank line. Following the header block is the body of the message (which may contain MIME-encoded
subparts).

Optionalheadersonlyis as with theparse() method.

Changed in version 2.2.2: Theheadersonlyflag was added.

parsestr (text[, headersonly])
Similar to theparse() method, except it takes a string object instead of a file-like object. Calling this method
on a string is exactly equivalent to wrappingtext in aStringIO instance first and callingparse() .

Optionalheadersonlyis a flag specifying whether to stop parsing after reading the headers or not. The default
is False , meaning it parses the entire contents of the file.

Changed in version 2.2.2: Theheadersonlyflag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-levelemail package namespace.

message_from_string (s[, class[, strict]])
Return a message object structure from a string. This is exactly equivalent toParser().parsestr(s) .
Optional classandstrict are interpreted as with theParser class constructor.

Changed in version 2.2.2: Thestrict flag was added.

message_from_file (fp[, class[, strict]])
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp) . Optional classandstrict are interpreted as with theParser class constructor.

Changed in version 2.2.2: Thestrict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

10 2 email — An email and MIME handling package

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

• Most non-multipart type messages are parsed as a single message object with a string payload. These objects
will return False for is_multipart() . Theirget_payload() method will return a string object.

• All multipart type messages will be parsed as a container message object with a list of sub-message objects
for their payload. The outer container message will returnTrue for is_multipart() and theirget_-
payload() method will return the list ofMessage subparts.

• Most messages with a content type ofmessage/* (e.g. message/delivery-status andmessage/rfc822) will also
be parsed as container object containing a list payload of length 1. Theiris_multipart() method will
returnTrue . The single element in the list payload will be a sub-message object.

• Some non-standards compliant messages may not be internally consistent about theirmultipart-edness. Such
messages may have aContent-Type: header of typemultipart, but their is_multipart() method may
return False . If such messages were parsed with theFeedParser , they will have an instance of the
MultipartInvariantViolationDefect class in theirdefectsattribute list. Seeemail.Errors for
details.

2.3 Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message via thesmtplib module or thenntplib
module, or print the message on the console. Taking a message object structure and producing a flat text document is
the job of theGenerator class.

Again, as with theemail.Parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure via theParser class, and back to flat text, is idempotent (the
input is identical to the output).

Here are the public methods of theGenerator class:

classGenerator (outfp[, manglefrom [, maxheaderlen]])
The constructor for theGenerator class takes a file-like object calledoutfp for an argument.outfp must
support thewrite() method and be usable as the output file in a Python extended print statement.

Optionalmanglefrom is a flag that, whenTrue , puts a ‘>’ character in front of any line in the body that starts
exactly as ‘From ’, i.e. From followed by a space at the beginning of the line. This is the only guaranteed
portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header separator (see
WHY THE CONTENT-LENGTH FORMAT IS BADfor details). manglefrom defaults toTrue , but you
might want to set this toFalse if you are not writing Unix mailbox format files.

Optionalmaxheaderlenspecifies the longest length for a non-continued header. When a header line is longer
thanmaxheaderlen(in characters, with tabs expanded to 8 spaces), the header will be split as defined in the
email.Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but not
required) by RFC 2822.

The other publicGenerator methods are:

2.3 Generating MIME documents 11

flatten (msg[, unixfrom])
Print the textual representation of the message object structure rooted atmsgto the output file specified when
the Generator instance was created. Subparts are visited depth-first and the resulting text will be properly
MIME encoded.

Optionalunixfrom is a flag that forces the printing of the envelope header delimiter before the first RFC 2822
header of the root message object. If the root object has no envelope header, a standard one is crafted. By
default, this is set toFalse to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.

New in version 2.2.2.

clone (fp)
Return an independent clone of thisGenerator instance with the exact same options.

New in version 2.2.2.

write (s)
Write the strings to the underlying file object, i.e.outfp passed toGenerator ’s constructor. This provides
just enough file-like API forGenerator instances to be used in extended print statements.

As a convenience, see the methodsMessage.as_string() andstr(aMessage) , a.k.a.Message.__str_-
_() , which simplify the generation of a formatted string representation of a message object. For more detail, see
email.Message .

The email.Generator module also provides a derived class, calledDecodedGenerator which is like the
Generator base class, except that non-text parts are substituted with a format string representing the part.

classDecodedGenerator (outfp[, manglefrom [, maxheaderlen[, fmt]]])
This class, derived fromGenerator walks through all the subparts of a message. If the subpart is of main
type text, then it prints the decoded payload of the subpart. Optionalmanglefrom andmaxheaderlenare as
with theGenerator base class.

If the subpart is not of main typetext, optionalfmt is a format string that is used instead of the message payload.
fmt is expanded with the following keywords, ‘%(keyword)s ’ format:

•type – Full MIME type of the non-text part

•maintype – Main MIME type of the non-text part

•subtype – Sub-MIME type of the non-text part

•filename – Filename of the non-text part

•description – Description associated with the non-text part

•encoding – Content transfer encoding of the non-text part

The default value forfmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Deprecated methods

The following methods are deprecated inemail version 2. They are documented here for completeness.

__call__ (msg[, unixfrom])
This method is identical to theflatten() method.

Deprecated since release 2.2.2.Use theflatten() method instead.

12 2 email — An email and MIME handling package

2.4 Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individualMessage objects by hand. In fact, you can also take an existing structure and add newMessage objects,
move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creatingMessage instances, adding attachments and all the appropriate
headers manually. For MIME messages though, theemail package provides some convenient subclasses to make
things easier. Each of these classes should be imported from a module with the same name as the class, from within
theemail package. E.g.:

import email.MIMEImage.MIMEImage

or

from email.MIMEText import MIMEText

Here are the classes:

classMIMEBase(maintype, subtype, **params)
This is the base class for all the MIME-specific subclasses ofMessage . Ordinarily you won’t create instances
specifically ofMIMEBase, although you could.MIMEBase is provided primarily as a convenient base class
for more specific MIME-aware subclasses.

maintypeis theContent-Type: major type (e.g.text or image), and subtypeis theContent-Type: minor type (e.g.
plain or gif). paramsis a parameter key/value dictionary and is passed directly toMessage.add_header() .

TheMIMEBase class always adds aContent-Type: header (based onmaintype, subtype, and params), and a
MIME-Version: header (always set to1.0).

classMIMENonMultipart ()
A subclass ofMIMEBase, this is an intermediate base class for MIME messages that are notmultipart. The
primary purpose of this class is to prevent the use of theattach() method, which only makes sense for
multipart messages. Ifattach() is called, aMultipartConversionError exception is raised.

New in version 2.2.2.

classMIMEMultipart ([subtype[, boundary[, subparts[, params]]]])
A subclass ofMIMEBase, this is an intermediate base class for MIME messages that aremultipart. Optional
subtypedefaults tomixed, but can be used to specify the subtype of the message. AContent-Type: header of

multipart/ subtypewill be added to the message object. AMIME-Version: header will also be added.

Optionalboundaryis the multipart boundary string. WhenNone (the default), the boundary is calculated when
needed.

subpartsis a sequence of initial subparts for the payload. It must be possible to convert this sequence to a list.
You can always attach new subparts to the message by using theMessage.attach() method.

Additional parameters for theContent-Type: header are taken from the keyword arguments, or passed into the
paramsargument, which is a keyword dictionary.

New in version 2.2.2.

classMIMEAudio (audiodata[, subtype[, encoder[, ** params]]])
A subclass ofMIMENonMultipart , theMIMEAudio class is used to create MIME message objects of major
type audio. audiodatais a string containing the raw audio data. If this data can be decoded by the standard
Python modulesndhdr , then the subtype will be automatically included in theContent-Type: header. Other-
wise you can explicitly specify the audio subtype via thesubtypeparameter. If the minor type could not be

2.4 Creating email and MIME objects from scratch 13

guessed andsubtypewas not given, thenTypeError is raised.

Optional encoderis a callable (i.e. function) which will perform the actual encoding of the audio data for trans-
port. This callable takes one argument, which is theMIMEAudio instance. It should useget_payload()
and set_payload() to change the payload to encoded form. It should also add anyContent-Transfer-
Encoding: or other headers to the message object as necessary. The default encoding is base64. See the
email.Encoders module for a list of the built-in encoders.

paramsare passed straight through to the base class constructor.

classMIMEImage(imagedata[, subtype[, encoder[, ** params]]])
A subclass ofMIMENonMultipart , theMIMEImage class is used to create MIME message objects of major
type image. imagedatais a string containing the raw image data. If this data can be decoded by the standard
Python moduleimghdr , then the subtype will be automatically included in theContent-Type: header. Other-
wise you can explicitly specify the image subtype via thesubtypeparameter. If the minor type could not be
guessed andsubtypewas not given, thenTypeError is raised.

Optional encoderis a callable (i.e. function) which will perform the actual encoding of the image data
for transport. This callable takes one argument, which is theMIMEImage instance. It should useget_-
payload() andset_payload() to change the payload to encoded form. It should also add anyContent-
Transfer-Encoding: or other headers to the message object as necessary. The default encoding is base64. See the
email.Encoders module for a list of the built-in encoders.

paramsare passed straight through to theMIMEBase constructor.

classMIMEMessage(msg[, subtype])
A subclass ofMIMENonMultipart , theMIMEMessage class is used to create MIME objects of main type
message. msg is used as the payload, and must be an instance of classMessage (or a subclass thereof),
otherwise aTypeError is raised.

Optional subtypesets the subtype of the message; it defaults torfc822.

classMIMEText (text[, subtype[, charset]])
A subclass ofMIMENonMultipart , theMIMEText class is used to create MIME objects of major typetext.
text is the string for the payload.subtypeis the minor type and defaults toplain. charsetis the character set of

the text and is passed as a parameter to theMIMENonMultipart constructor; it defaults tous-ascii . No
guessing or encoding is performed on the text data.

Changed in version 2.4: The previously deprecatedencodingargument has been removed. Encoding happens
implicitly based on thecharsetargument.

2.5 Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822 standard
which came into widespread use at a time when most email was composed ofASCII characters only. RFC 2822 is a
specification written assuming email contains only 7-bitASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific char-
acter sets can now be used in email messages. The base standard still requires email messages to be transferred using
only 7-bitASCII characters, so a slew of RFCs have been written describing how to encode email containing non-ASCII

characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047, and RFC 2231.
Theemail package supports these standards in itsemail.Header andemail.Charset modules.

If you want to include non-ASCII characters in your email headers, say in theSubject: or To: fields, you should use the
Header class and assign the field in theMessage object to an instance ofHeader instead of using a string for the
header value. For example:

14 2 email — An email and MIME handling package

>>> from email.Message import Message
>>> from email.Header import Header
>>> msg = Message()
>>> h = Header(’p\xf6stal’, ’iso-8859-1’)
>>> msg[’Subject’] = h
>>> print msg.as_string()
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted theSubject: field to contain a non-ASCII character? We did this by creating aHeader
instance and passing in the character set that the byte string was encoded in. When the subsequentMessage instance
was flattened, theSubject: field was properly RFC 2047 encoded. MIME-aware mail readers would show this header
using the embedded ISO-8859-1 character.

New in version 2.2.2.

Here is theHeader class description:

classHeader ([s[, charset[, maxlinelen[, headername[, continuationws[, errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optionals is the initial header value. IfNone (the default), the initial header value is not set. You can later
append to the header withappend() method calls.s may be a byte string or a Unicode string, but see the
append() documentation for semantics.

Optional charsetserves two purposes: it has the same meaning as thecharsetargument to theappend()
method. It also sets the default character set for all subsequentappend() calls that omit thecharsetargument.
If charsetis not provided in the constructor (the default), theus-ascii character set is used both ass’s initial
charset and as the default for subsequentappend() calls.

The maximum line length can be specified explicit viamaxlinelen. For splitting the first line to a shorter value
(to account for the field header which isn’t included ins, e.g.Subject:) pass in the name of the field inheader-
name. The defaultmaxlinelenis 76, and the default value forheadernameis None, meaning it is not taken into
account for the first line of a long, split header.

Optionalcontinuationwsmust be RFC 2822-compliant folding whitespace, and is usually either a space or a
hard tab character. This character will be prepended to continuation lines.

Optionalerrors is passed straight through to theappend() method.

append (s[, charset[, errors]])
Append the strings to the MIME header.

Optionalcharset, if given, should be aCharset instance (seeemail.Charset) or the name of a character
set, which will be converted to aCharset instance. A value ofNone (the default) means that thecharsetgiven
in the constructor is used.

s may be a byte string or a Unicode string. If it is a byte string (i.e.isinstance(s, str) is true), then
charsetis the encoding of that byte string, and aUnicodeError will be raised if the string cannot be decoded
with that character set.

If s is a Unicode string, thencharsetis a hint specifying the character set of the characters in the string. In
this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string will be
encoded using the following charsets in order:us-ascii , thecharsethint, utf-8 . The first character set to
not provoke aUnicodeError is used.

Optionalerrors is passed through to anyunicode() or ustr.encode() call, and defaults to “strict”.

encode ([splitchars])
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating non-
ASCII parts in base64 or quoted-printable encodings. Optionalsplitcharsis a string containing characters to split

2.5 Internationalized headers 15

long ASCII lines on, in rough support of RFC 2822’shighest level syntactic breaks. This doesn’t affect RFC
2047 encoded lines.

TheHeader class also provides a number of methods to support standard operators and built-in functions.

__str__ ()
A synonym forHeader.encode() . Useful forstr(aHeader) .

__unicode__ ()
A helper for the built-inunicode() function. Returns the header as a Unicode string.

__eq__ (other)
This method allows you to compare twoHeader instances for equality.

__ne__ (other)
This method allows you to compare twoHeader instances for inequality.

Theemail.Header module also provides the following convenient functions.

decode_header (header)
Decode a message header value without converting the character set. The header value is inheader.

This function returns a list of(decoded_string, charset) pairs containing each of the decoded parts
of the header.charsetis None for non-encoded parts of the header, otherwise a lower case string containing the
name of the character set specified in the encoded string.

Here’s an example:

>>> from email.Header import decode_header
>>> decode_header(’=?iso-8859-1?q?p=F6stal?=’)
[(’p\xf6stal’, ’iso-8859-1’)]

make_header (decodedseq[, maxlinelen[, headername[, continuationws]]])
Create aHeader instance from a sequence of pairs as returned bydecode_header() .

decode_header() takes a header value string and returns a sequence of pairs of the format(decoded_-
string, charset) wherecharsetis the name of the character set.

This function takes one of those sequence of pairs and returns aHeader instance. Optionalmaxlinelen,
headername, andcontinuationwsare as in theHeader constructor.

2.6 Representing character sets

This module provides a classCharset for representing character sets and character set conversions in email mes-
sages, as well as a character set registry and several convenience methods for manipulating this registry. Instances of
Charset are used in several other modules within theemail package.

New in version 2.2.2.

classCharset ([input charset])
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in an
email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or bodies.
Certain character sets must be converted outright, and are not allowed in email.

Optional input charsetis as described below; it is always coerced to lower case. After being alias normalized
it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,

16 2 email — An email and MIME handling package

and output conversion codec to be used for the character set. For example, ifinput charsetis iso-8859-1 ,
then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary. If
input charsetis euc-jp , then headers will be encoded with base64, bodies will not be encoded, but output text
will be converted from theeuc-jp character set to theiso-2022-jp character set.

Charset instances have the following data attributes:

input_charset
The initial character set specified. Common aliases are converted to theirofficial email names (e.g.latin_1
is converted toiso-8859-1). Defaults to 7-bitus-ascii .

header_encoding
If the character set must be encoded before it can be used in an email header, this attribute will be set to
Charset.QP (for quoted-printable),Charset.BASE64 (for base64 encoding), orCharset.SHORTEST
for the shortest of QP or BASE64 encoding. Otherwise, it will beNone.

body_encoding
Same asheaderencoding, but describes the encoding for the mail message’s body, which indeed may be differ-
ent than the header encoding.Charset.SHORTEST is not allowed forbodyencoding.

output_charset
Some character sets must be converted before they can be used in email headers or bodies. If theinput charset
is one of them, this attribute will contain the name of the character set output will be converted to. Otherwise, it
will be None.

input_codec
The name of the Python codec used to convert theinput charsetto Unicode. If no conversion codec is necessary,
this attribute will beNone.

output_codec
The name of the Python codec used to convert Unicode to theoutput charset. If no conversion codec is neces-
sary, this attribute will have the same value as theinput codec.

Charset instances also have the following methods:

get_body_encoding ()
Return the content transfer encoding used for body encoding.

This is either the string ‘quoted-printable ’ or ‘ base64 ’ depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being encoded.
The function should then set theContent-Transfer-Encoding: header itself to whatever is appropriate.

Returns the string ‘quoted-printable ’ if bodyencodingis QP, returns the string ‘base64 ’ if body -
encodingis BASE64, and returns the string ‘7bit ’ otherwise.

convert (s)
Convert the strings from theinput codecto theoutput codec.

to_splittable (s)
Convert a possibly multibyte string to a safely splittable format.s is the string to split.

Uses theinput codecto try and convert the string to Unicode, so it can be safely split on character boundaries
(even for multibyte characters).

Returns the string as-is if it isn’t known how to converts to Unicode with theinput charset.

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
‘U+FFFD’.

from_splittable (ustr[, to output])
Convert a splittable string back into an encoded string.ustr is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

2.6 Representing character sets 17

Characters that could not be converted from Unicode will be replaced with an appropriate character (usually
‘?’).

If to outputis True (the default), usesoutput codecto convert to an encoded format. Ifto outputis False , it
usesinput codec.

get_output_charset ()
Return the output character set.

This is theoutput charsetattribute if that is notNone, otherwise it isinput charset.

encoded_header_len ()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encoding.

header_encode (s[, convert])
Header-encode the strings.

If convert is True , the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-levelHeader class to deal with these issues (see
email.Header). convertdefaults toFalse .

The type of encoding (base64 or quoted-printable) will be based on theheaderencodingattribute.

body_encode (s[, convert])
Body-encode the strings.

If convertis True (the default), the string will be converted from the input charset to output charset automat-
ically. Unlike header_encode() , there are no issues with byte boundaries and multibyte charsets in email
bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based on thebodyencodingattribute.

TheCharset class also provides a number of methods to support standard operations and built-in functions.

__str__ ()
Returnsinput charsetas a string coerced to lower case.__repr__() is an alias for__str__() .

__eq__ (other)
This method allows you to compare twoCharset instances for equality.

__ne__ (other)
This method allows you to compare twoCharset instances for inequality.

Theemail.Charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

add_charset (charset[, headerenc[, bodyenc[, outputcharset]]])
Add character properties to the global registry.

charsetis the input character set, and must be the canonical name of a character set.

Optional headerenc and bodyenc is either Charset.QP for quoted-printable,Charset.BASE64 for
base64 encoding,Charset.SHORTEST for the shortest of quoted-printable or base64 encoding, orNone
for no encoding.SHORTESTis only valid forheaderenc. The default isNone for no encoding.

Optionaloutput charsetis the character set that the output should be in. Conversions will proceed from input
charset, to Unicode, to the output charset when the methodCharset.convert() is called. The default is to
output in the same character set as the input.

Both input charsetandoutput charsetmust have Unicode codec entries in the module’s character set-to-codec
mapping; useadd_codec() to add codecs the module does not know about. See thecodecs module’s
documentation for more information.

The global character set registry is kept in the module global dictionaryCHARSETS.

18 2 email — An email and MIME handling package

add_alias (alias, canonical)
Add a character set alias.alias is the alias name, e.g.latin-1 . canonicalis the character set’s canonical
name, e.g.iso-8859-1 .

The global charset alias registry is kept in the module global dictionaryALIASES.

add_codec (charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

charsetis the canonical name of a character set.codecnameis the name of a Python codec, as appropriate for
the second argument to theunicode() built-in, or to theencode() method of a Unicode string.

2.7 Encoders

When creatingMessage objects from scratch, you often need to encode the payloads for transport through compliant
mail servers. This is especially true forimage/* andtext/* type messages containing binary data.

The email package provides some convenient encodings in itsEncoders module. These encoders are actually
used by theMIMEAudio andMIMEImage class constructors to provide default encodings. All encoder functions
take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the
payload to this newly encoded value. They should also set theContent-Transfer-Encoding: header as appropriate.

Here are the encoding functions provided:

encode_quopri (msg)
Encodes the payload into quoted-printable form and sets theContent-Transfer-Encoding: header to
quoted-printable 2. This is a good encoding to use when most of your payload is normal printable data,
but contains a few unprintable characters.

encode_base64 (msg)
Encodes the payload into base64 form and sets theContent-Transfer-Encoding: header tobase64 . This is
a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode_7or8bit (msg)
This doesn’t actually modify the message’s payload, but it does set theContent-Transfer-Encoding: header to
either7bit or 8bit as appropriate, based on the payload data.

encode_noop (msg)
This does nothing; it doesn’t even set theContent-Transfer-Encoding: header.

2.8 Exception and Defect classes

The following exception classes are defined in theemail.Errors module:

exceptionMessageError ()
This is the base class for all exceptions that theemail package can raise. It is derived from the standard
Exception class and defines no additional methods.

exceptionMessageParseError ()
This is the base class for exceptions thrown by theParser class. It is derived fromMessageError .

exceptionHeaderParseError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from theParser.parse() or Parser.parsestr() methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of the
message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the headers

2Note that encoding withencode_quopri() also encodes all tabs and space characters in the data.

2.7 Encoders 19

which is neither a header or a continuation line.

exceptionBoundaryError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from theParser.parse() or Parser.parsestr() methods.

Situations where it can be raised include not being able to find the starting or terminating boundary in amulti-
part/* message when strict parsing is used.

exceptionMultipartConversionError ()
Raised when a payload is added to aMessage object using add_payload() , but the payload
is already a scalar and the message’sContent-Type: main type is not eithermultipart or missing.
MultipartConversionError multiply inherits fromMessageError and the built-inTypeError .

SinceMessage.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if theattach() method is called on an instance of a class derived from
MIMENonMultipart (e.g.MIMEImage).

Here’s the list of the defects that theFeedParser can find while parsing messages. Note that the defects are added
to the message where the problem was found, so for example, if a message nested inside amultipart/alternative had a
malformed header, that nested message object would have a defect, but the containing messages would not.

All defect classes are subclassed fromemail.Errors.MessageDefect , but this class isnotan exception!

New in version 2.4: All the defect classes were added.

• NoBoundaryInMultipartDefect – A message claimed to be a multipart, but had noboundary parameter.

• StartBoundaryNotFoundDefect – The start boundary claimed in theContent-Type: header was never
found.

• FirstHeaderLineIsContinuationDefect – The message had a continuation line as its first header
line.

• MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header block.

• MalformedHeaderDefect – A header was found that was missing a colon, or was otherwise malformed.

• MultipartInvariantViolationDefect – A message claimed to be amultipart, but no subparts were
found. Note that when a message has this defect, itsis_multipart() method may return false even though
its content type claims to bemultipart.

2.9 Miscellaneous utilities

There are several useful utilities provided in theemail.Utils module:

quote (str)
Return a new string with backslashes instr replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote (str)
Return a new string which is anunquotedversion ofstr. If str ends and begins with double quotes, they are
stripped off. Likewise ifstr ends and begins with angle brackets, they are stripped off.

parseaddr (address)
Parse address – which should be the value of some address-containing field such asTo: or Cc: – into its con-
stituentrealnameandemail addressparts. Returns a tuple of that information, unless the parse fails, in which
case a 2-tuple of(’’, ’’) is returned.

20 2 email — An email and MIME handling package

formataddr (pair)
The inverse ofparseaddr() , this takes a 2-tuple of the form(realname, email_address) and re-
turns the string value suitable for aTo: or Cc: header. If the first element ofpair is false, then the second element
is returned unmodified.

getaddresses (fieldvalues)
This method returns a list of 2-tuples of the form returned byparseaddr() . fieldvaluesis a sequence of
header field values as might be returned byMessage.get_all() . Here’s a simple example that gets all the
recipients of a message:

from email.Utils import getaddresses

tos = msg.get_all(’to’, [])
ccs = msg.get_all(’cc’, [])
resent_tos = msg.get_all(’resent-to’, [])
resent_ccs = msg.get_all(’resent-cc’, [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate (date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that format as
specified, soparsedate() tries to guess correctly in such cases.dateis a string containing an RFC 2822 date,
such as"Mon, 20 Nov 1995 19:12:08 -0500" . If it succeeds in parsing the date,parsedate()
returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone will be returned. Note that
fields 6, 7, and 8 of the result tuple are not usable.

parsedate_tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time)3. If the input string has no timezone, the last
element of the tuple returned isNone. Note that fields 6, 7, and 8 of the result tuple are not usable.

mktime_tz (tuple)
Turn a 10-tuple as returned byparsedate_tz() into a UTC timestamp. It the timezone item in the tuple is
None, assume local time. Minor deficiency:mktime_tz() interprets the first 8 elements oftupleas a local
time and then compensates for the timezone difference. This may yield a slight error around changes in daylight
savings time, though not worth worrying about for common use.

formatdate ([timeval[, localtime][, usegmt]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted bytime.gmtime() and
time.localtime() , otherwise the current time is used.

Optionallocaltimeis a flag that whenTrue , interpretstimeval, and returns a date relative to the local timezone
instead of UTC, properly taking daylight savings time into account. The default isFalse meaning UTC is
used.

Optionalusegmtis a flag that whenTrue , outputs a date string with the timezone as an ascii stringGMT, rather
than a numeric-0000 . This is needed for some protocols (such as HTTP). This only applies whenlocaltimeis
False . New in version 2.4.

make_msgid ([idstring])
Returns a string suitable for an RFC 2822-compliantMessage-ID: header. Optionalidstring if given, is a string
used to strengthen the uniqueness of the message id.

3Note that the sign of the timezone offset is the opposite of the sign of thetime.timezone variable for the same timezone; the latter variable
follows the POSIX standard while this module follows RFC 2822.

2.9 Miscellaneous utilities 21

decode_rfc2231 (s)
Decode the strings according to RFC 2231.

encode_rfc2231 (s[, charset[, language]])
Encode the strings according to RFC 2231. Optionalcharsetandlanguage, if given is the character set name
and language name to use. If neither is given,s is returned as-is. Ifcharsetis given butlanguageis not, the
string is encoded using the empty string forlanguage.

collapse_rfc2231_value (value[, errors[, fallback charset]])
When a header parameter is encoded in RFC 2231 format,Message.get_param() may return a 3-tuple
containing the character set, language, and value.collapse_rfc2231_value() turns this into a unicode
string. Optionalerrors is passed to theerrors argument of the built-inunicode() function; it defaults to
replace . Optionalfallback charsetspecifies the character set to use if the one in the RFC 2231 header is not
known by Python; it defaults tous-ascii .

For convenience, if thevaluepassed tocollapse_rfc2231_value() is not a tuple, it should be a string
and it is returned unquoted.

decode_params (params)
Decode parameters list according to RFC 2231.paramsis a sequence of 2-tuples containing elements of the
form (content-type, string-value) .

Changed in version 2.4: Thedump_address_pair() function has been removed; useformataddr() instead.

Changed in version 2.4: Thedecode() function has been removed; use theHeader.decode_header() method
instead.

Changed in version 2.4: Theencode() function has been removed; use theHeader.encode() method instead.

2.10 Iterators

Iterating over a message object tree is fairly easy with theMessage.walk() method. Theemail.Iterators
module provides some useful higher level iterations over message object trees.

body_line_iterator (msg[, decode])
This iterates over all the payloads in all the subparts ofmsg, returning the string payloads line-by-line. It skips
over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from a file usingreadline() ,
skipping over all the intervening headers.

Optionaldecodeis passed through toMessage.get_payload() .

typed_subpart_iterator (msg[, maintype[, subtype]])
This iterates over all the subparts ofmsg, returning only those subparts that match the MIME type specified by
maintypeandsubtype.

Note thatsubtypeis optional; if omitted, then subpart MIME type matching is done only with the main type.
maintypeis optional too; it defaults totext.

Thus, by defaulttyped_subpart_iterator() returns each subpart that has a MIME type oftext/*.

The following function has been added as a useful debugging tool. It shouldnot be considered part of the supported
public interface for the package.

_structure (msg[, fp[, level]])
Prints an indented representation of the content types of the message object structure. For example:

22 2 email — An email and MIME handling package

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed

text/plain
text/plain
multipart/digest

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

message/rfc822
text/plain

text/plain

Optionalfp is a file-like object to print the output to. It must be suitable for Python’s extended print statement.
level is used internally.

2.11 Package History

Version 1 of theemail package was bundled with Python releases up to Python 2.2.1. Version 2 was developed for
the Python 2.3 release, and backported to Python 2.2.2. It was also available as a separate distutils-based package, and
is compatible back to Python 2.1.

email version 3.0 was released with Python 2.4 and as a separate distutils-based package. It is compatible back to
Python 2.3.

Here are the differences betweenemail version 3 and version 2:

• The FeedParser class was introduced, and theParser class was implemented in terms of the
FeedParser . All parsing there for is non-strict, and parsing will make a best effort never to raise an ex-
ception. Problems found while parsing messages are stored in the message’sdefectattribute.

• All aspects of the API which raisedDeprecationWarning s in version 2 have been removed.
These include theencoder argument to theMIMEText constructor, theMessage.add_payload()
method, theUtils.dump_address_pair() function, and the functionsUtils.decode() and
Utils.encode() .

• New DeprecationWarning s have been added to:Generator.__call__() , Message.get_-
type() , Message.get_main_type() , Message.get_subtype() , and thestrict argument to the
Parser class. These are expected to be removed in email 3.1.

• Support for Pythons earlier than 2.3 has been removed.

Here are the differences betweenemail version 2 and version 1:

• Theemail.Header andemail.Charset modules have been added.

• The pickle format forMessage instances has changed. Since this was never (and still isn’t) formally defined,
this isn’t considered a backward incompatibility. However if your application pickles and unpicklesMessage
instances, be aware that inemail version 2,Message instances now have private variablescharsetand
default type.

2.11 Package History 23

• Several methods in theMessage class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation for theMessage class for details. The changes should be
completely backward compatible.

• The object structure has changed in the face ofmessage/rfc822 content types. Inemail version 1, such a
type would be represented by a scalar payload, i.e. the container message’sis_multipart() returned false,
get_payload() was not a list object, but a singleMessage instance.

This structure was inconsistent with the rest of the package, so the object representation formessage/rfc822
content types was changed. Inemail version 2, the containerdoesreturnTrue from is_multipart() ,
andget_payload() returns a list containing a singleMessage item.

Note that this is one place that backward compatibility could not be completely maintained. However, if you’re
already testing the return type ofget_payload() , you should be fine. You just need to make sure your code
doesn’t do aset_payload() with aMessage instance on a container with a content type ofmessage/rfc822.

• TheParser constructor’sstrict argument was added, and itsparse() andparsestr() methods grew a
headersonlyargument. Thestrict flag was also added to functionsemail.message_from_file() and
email.message_from_string() .

• Generator.__call__() is deprecated; useGenerator.flatten() instead. TheGenerator class
has also grown theclone() method.

• TheDecodedGenerator class in theemail.Generator module was added.

• The intermediate base classesMIMENonMultipart andMIMEMultipart have been added, and interposed
in the class hierarchy for most of the other MIME-related derived classes.

• The encoderargument to theMIMEText constructor has been deprecated. Encoding now happens implicitly
based on thecharsetargument.

• The following functions in theemail.Utils module have been deprecated:dump_address_pairs() ,
decode() , andencode() . The following functions have been added to the module:make_msgid() ,
decode_rfc2231() , encode_rfc2231() , anddecode_params() .

• The non-public functionemail.Iterators._structure() was added.

2.12 Differences from mimelib

Theemail package was originally prototyped as a separate library calledmimelib . Changes have been made so that
method names are more consistent, and some methods or modules have either been added or removed. The semantics
of some of the methods have also changed. For the most part, any functionality available inmimelib is still available
in theemail package, albeit often in a different way. Backward compatibility between themimelib package and
theemail package was not a priority.

Here is a brief description of the differences between themimelib and theemail packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed toemail .
In addition, the top-level package has the following differences:

• messageFromString() has been renamed tomessage_from_string() .

• messageFromFile() has been renamed tomessage_from_file() .

TheMessage class has the following differences:

• The methodasString() was renamed toas_string() .

24 2 email — An email and MIME handling package

• The methodismultipart() was renamed tois_multipart() .

• Theget_payload() method has grown adecodeoptional argument.

• The methodgetall() was renamed toget_all() .

• The methodaddheader() was renamed toadd_header() .

• The methodgettype() was renamed toget_type() .

• The methodgetmaintype() was renamed toget_main_type() .

• The methodgetsubtype() was renamed toget_subtype() .

• The methodgetparams() was renamed toget_params() . Also, whereasgetparams() returned a list
of strings,get_params() returns a list of 2-tuples, effectively the key/value pairs of the parameters, split on
the ‘=’ sign.

• The methodgetparam() was renamed toget_param() .

• The methodgetcharsets() was renamed toget_charsets() .

• The methodgetfilename() was renamed toget_filename() .

• The methodgetboundary() was renamed toget_boundary() .

• The methodsetboundary() was renamed toset_boundary() .

• The methodgetdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decodeflag of the getpayload() method.

• The method getpayloadastext() was removed. Similar functionality is supported by the
DecodedGenerator class in theemail.Generator module.

• The methodgetbodyastext() was removed. You can get similar functionality by creating an iterator with
typed_subpart_iterator() in theemail.Iterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents as aMessage instance containing separateMessage
subparts for each header block in the delivery status notification4.

TheGenerator class has no differences in its public interface. There is a new class in theemail.Generator
module though, calledDecodedGenerator which provides most of the functionality previously available in the
Message.getpayloadastext() method.

The following modules and classes have been changed:

• The MIMEBase class constructor argumentsmajor and minor have changed tomaintypeand subtypere-
spectively.

• The Image class/module has been renamed toMIMEImage. The minor argument has been renamed to-
subtype.

• TheText class/module has been renamed toMIMEText . The minor argument has been renamed tosubtype.

• The MessageRFC822 class/module has been renamed toMIMEMessage. Note that an earlier version of
mimelib called this class/moduleRFC822, but that clashed with the Python standard library modulerfc822
on some case-insensitive file systems.

Also, theMIMEMessage class now represents any kind of MIME message with main typemessage. It takes
an optional argumentsubtypewhich is used to set the MIME subtype.subtypedefaults torfc822.

4Delivery Status Notifications (DSN) are defined in RFC 1894.

2.12 Differences from mimelib 25

mimelib provided some utility functions in itsaddress anddate modules. All of these functions have been
moved to theemail.Utils module.

TheMsgReader class/module has been removed. Its functionality is most closely supported in thebody_line_-
iterator() function in theemail.Iterators module.

2.13 Examples

Here are a few examples of how to use theemail package to read, write, and send simple email messages, as well as
more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email.MIMEText import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
fp = open(textfile, ’rb’)
Create a text/plain message
msg = MIMEText(fp.read())
fp.close()

me == the sender’s email address
you == the recipient’s email address
msg[’Subject’] = ’The contents of %s’ % textfile
msg[’From’] = me
msg[’To’] = you

Send the message via our own SMTP server, but don’t include the
envelope header.
s = smtplib.SMTP()
s.connect()
s.sendmail(me, [you], msg.as_string())
s.close()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in a
directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we’ll need
from email.MIMEImage import MIMEImage
from email.MIMEMultipart import MIMEMultipart

COMMASPACE = ’, ’

Create the container (outer) email message.
msg = MIMEMultipart()
msg[’Subject’] = ’Our family reunion’
me == the sender’s email address
family = the list of all recipients’ email addresses
msg[’From’] = me
msg[’To’] = COMMASPACE.join(family)

26 2 email — An email and MIME handling package

msg.preamble = ’Our family reunion’
Guarantees the message ends in a newline
msg.epilogue = ’’

Assume we know that the image files are all in PNG format
for file in pngfiles:

Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, ’rb’)
img = MIMEImage(fp.read())
fp.close()
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()
s.connect()
s.sendmail(me, family, msg.as_string())
s.close()

Here’s an example of how to send the entire contents of a directory as an email message:5

#!/usr/bin/env python

"""Send the contents of a directory as a MIME message.

Usage: dirmail [options] from to [to ...]*

Options:
-h / --help

Print this message and exit.

-d directory
--directory=directory

Mail the contents of the specified directory, otherwise use the
current directory. Only the regular files in the directory are sent,
and we don’t recurse to subdirectories.

‘from’ is the email address of the sender of the message.

‘to’ is the email address of the recipient of the message, and multiple
recipients may be given.

The email is sent by forwarding to your local SMTP server, which then does the
normal delivery process. Your local machine must be running an SMTP server.
"""

import sys
import os
import getopt
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from email import Encoders
from email.Message import Message
from email.MIMEAudio import MIMEAudio
from email.MIMEBase import MIMEBase

5Thanks to Matthew Dixon Cowles for the original inspiration and examples.

2.13 Examples 27

from email.MIMEMultipart import MIMEMultipart
from email.MIMEImage import MIMEImage
from email.MIMEText import MIMEText

COMMASPACE = ’, ’

def usage(code, msg=’’):
print >> sys.stderr, __doc__
if msg:

print >> sys.stderr, msg
sys.exit(code)

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], ’hd:’, [’help’, ’directory=’])
except getopt.error, msg:

usage(1, msg)

dir = os.curdir
for opt, arg in opts:

if opt in (’-h’, ’--help’):
usage(0)

elif opt in (’-d’, ’--directory’):
dir = arg

if len(args) < 2:
usage(1)

sender = args[0]
recips = args[1:]

Create the enclosing (outer) message
outer = MIMEMultipart()
outer[’Subject’] = ’Contents of directory %s’ % os.path.abspath(dir)
outer[’To’] = COMMASPACE.join(recips)
outer[’From’] = sender
outer.preamble = ’You will not see this in a MIME-aware mail reader.\n’
To guarantee the message ends with a newline
outer.epilogue = ’’

for filename in os.listdir(dir):
path = os.path.join(dir, filename)
if not os.path.isfile(path):

continue
Guess the content type based on the file’s extension. Encoding
will be ignored, although we should check for simple things like
gzip’d or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’

maintype, subtype = ctype.split(’/’, 1)
if maintype == ’text’:

fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)

28 2 email — An email and MIME handling package

fp.close()
elif maintype == ’image’:

fp = open(path, ’rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’audio’:
fp = open(path, ’rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()

else:
fp = open(path, ’rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
Encoders.encode_base64(msg)

Set the filename parameter
msg.add_header(’Content-Disposition’, ’attachment’, filename=filename)
outer.attach(msg)

Now send the message
s = smtplib.SMTP()
s.connect()
s.sendmail(sender, recips, outer.as_string())
s.close()

if __name__ == ’__main__’:
main()

And finally, here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python

"""Unpack a MIME message into a directory of files.

Usage: unpackmail [options] msgfile

Options:
-h / --help

Print this message and exit.

-d directory
--directory=directory

Unpack the MIME message into the named directory, which will be
created if it doesn’t already exist.

msgfile is the path to the file containing the MIME message.
"""

import sys
import os
import getopt
import errno
import mimetypes
import email

def usage(code, msg=’’):

2.13 Examples 29

print >> sys.stderr, __doc__
if msg:

print >> sys.stderr, msg
sys.exit(code)

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], ’hd:’, [’help’, ’directory=’])
except getopt.error, msg:

usage(1, msg)

dir = os.curdir
for opt, arg in opts:

if opt in (’-h’, ’--help’):
usage(0)

elif opt in (’-d’, ’--directory’):
dir = arg

try:
msgfile = args[0]

except IndexError:
usage(1)

try:
os.mkdir(dir)

except OSError, e:
Ignore directory exists error
if e.errno <> errno.EEXIST: raise

fp = open(msgfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():

multipart/* are just containers
if part.get_content_maintype() == ’multipart’:

continue
Applications should really sanitize the given filename so that an
email message can’t be used to overwrite important files
filename = part.get_filename()
if not filename:

ext = mimetypes.guess_extension(part.get_type())
if not ext:

Use a generic bag-of-bits extension
ext = ’.bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(dir, filename), ’wb’)
fp.write(part.get_payload(decode=1))
fp.close()

if __name__ == ’__main__’:
main()

30 2 email — An email and MIME handling package

	1 Introduction
	2 email --- An email and MIME handling package
	2.1 Representing an email message
	Deprecated methods

	2.2 Parsing email messages
	FeedParser API
	Parser class API
	Additional notes

	2.3 Generating MIME documents
	Deprecated methods

	2.4 Creating email and MIME objects from scratch
	2.5 Internationalized headers
	2.6 Representing character sets
	2.7 Encoders
	2.8 Exception and Defect classes
	2.9 Miscellaneous utilities
	2.10 Iterators
	2.11 Package History
	2.12 Differences from mimelib
	2.13 Examples

