email Package Reference

Release 3.0
Barry Warsaw

March 5, 2006
barry@python.org

Abstract

Theemail package provides classes and utilities to create, parse, generate, and modify email messages, con-
forming to all the relevant email and MIME related RFCs.

Contents
1 Introduction 1
2 email — Anemail and MIME handling package 2

2.1 Representing an email message
Deprecated methods

2

8

2.2 Parsingemail mesSsages i e e e e 9
FeedParser APL e e e e 9
Parser class AP 10
Additional notes. 11

2.3 Generating MIME documents. L 11
Deprecated methods. e 12
2.4 Creating email and MIME objects from scratch. 13
2.5 Internationalized headers. e 14
2.6 Representingcharactersets 16
2.7 ENCOUEIS o o 19
2.8 Exceptionand Defectclasses e e 19
2.9 Miscellaneous utilities. L 20
2.0 Iterators. o o e e e e e 22
2.11 Package HiStory o o 23
2.12 Differences fronmimelib L 24
213 Examples.o 26

1 Introduction

Theemail package provides classes and utilities to create, parse, generate, and modify email messages, conforming
to all the relevant email and MIME related RFCs.

This document describes version 3.0 of émail package, which is distributed with Python 2.4 and is available as a
standalone distutils-based package for use with Pythoregnail 3.0 is not compatible with Python versions earlier

than 2.3. For more information about temail package, including download links and mailing lists, Bg¢hon’s
email SIG

The documentation that follows was written for the Python project, so if you're reading this as part of the standalone
email package documentation, there are a few notes to be aware of:

e Deprecation and “version added” notes are relative to the Python version a feature was added or deprecated.

e If you're reading this documentation as part of the standatmail package, some of the internal links to
other sections of the Python standard library may not resolve.

2 email — An email and MIME handling package

New in version 2.2.

Theemail package is a library for managing email messages, including MIME and other RFC 2822-based message
documents. It subsumes most of the functionality in several older standard modules sgéas, mimetools

multifile , and other non-standard packages sucmiasecntl . It is specificallynotdesigned to do any sending

of email messages to SMTP (RFC 2821) servers; that is the function efitt@ib module. Theemail package
attempts to be as RFC-compliant as possible, supporting in addition to RFC 2822, such MIME-related RFCs as RFC
2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of tleenail package is that it splits the parsing and generating of email messages

from the internalbbject modelepresentation of email. Applications using #mail package deal primarily with

objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-arrange the contents,
etc. There is a separate parser and a separate generator which handles the transformation from flat text to the object
model, and then back to flat text again. There are also handy subclasses for some common MIME object types, and a
few miscellaneous utilities that help with such common tasks as extracting and parsing message field values, creating
RFC-compliant dates, etc.

The following sections describe the functionality of thail package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is parsed
to produce the object structure of the email message, this structure is manipulated, and finally rendered back into flat
text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there, a
similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules tkatafie package provides, the exception
classes you might encounter while using #meail package, some auxiliary utilities, and a few examples. For users
of the oldermimelib package, or previous versions of temail package, a section on differences and porting is
provided.

See Also:

Modulesmtplib (section??):
SMTP protocol client

2.1 Representing an email message

The central class in themail package is théMessage class; it is the base class for teenail object model.
Message provides the core functionality for setting and querying header fields, and for accessing message bodies.

Conceptually, aMessage object consists oheadersand payloads Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or the
field value.

2 2 email — An email and MIME handling package

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be a
single envelope header, also known aslimix-From header or thé&rom_ header. The payload is either a string in

the case of simple message objects or a lidfle§sage objects for MIME container documents (ergultipart/* and
message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface for
accessing both the headers and the payload. It provides convenience methods for generating a flat text representation
of the message object tree, for accessing commonly used header parameters, and for recursively walking over the
object tree.

Here are the methods of tivessage class:

classMessage ()
The constructor takes no arguments.

as_string ([unixfrom])
Return the entire message flatten as a string. When optimidtomis True , the envelope header is included
in the returned stringunixfromdefaults toFalse .

Note that this method is provided as a convenience and may not always format the message the way you want.
For example, by default it mangles lines that begin witbm . For more flexibility, instantiate &enerator
instance and use iffatten() method directly. For example:

from cStringlO import StringlO

from email.Generator import Generator

fp = StringlO()

g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)

text = fp.getvalue()

_str ()
Equivalent toas_string(unixfrom=True)

is_multipart 0
ReturnTrue if the message’s payload is a list of siessage objects, otherwise retufifalse . Whenis_-
multipart() returns False, the payload should be a string object.

set_unixfrom (‘unixfrom)
Set the message’s envelope heademiafrom which should be a string.

get_unixfrom ()
Return the message’s envelope header. Defauiote if the envelope header was never set.

attach (payload
Add the givenpayloadto the current payload, which must bione or a list of Message objects before the
call. After the call, the payload will always be a list Mfessage objects. If you want to set the payload to a

scalar object (e.g. a string), uset_payload() instead.

get_payload ([|[decodd])
Return a reference the current payload, which will be a lisg¥lebsage objects whens_multipart() is
True , or a string whers_multipart() is False . If the payload is a list and you mutate the list object,

you modify the message’s payload in place.

With optional argument, get_payload() will return thei-th element of the payload, counting from zero, if
is_multipart() is True . AnIndexError will be raised ifi is less than O or greater than or equal to the
number of items in the payload. If the payload is a string {emultipart() is False) andi is given, a
TypeError is raised.

Optionaldecodeis a flag indicating whether the payload should be decoded or not, accordingQortiest-
Transfer-Encoding: header. Wheifrue and the message is not a multipart, the payload will be decoded if this
header’s value isquoted-printable "or ‘base64 . If some other encoding is used, Obntent-Transfer-

2.1 Representing an email message 3

Encoding: header is missing, or if the payload has bogus base64 data, the payload is returned as-is (undecoded).
If the message is a multipart and tbecodeflag is True , thenNone is returned. The default fatecodeis
False .

set_payload (payloac[, charseﬂ)
Set the entire message object’s payloagdgload It is the client’s responsibility to ensure the payload invari-
ants. Optionatharsetsets the message’s default character setseeeharset() for details.

Changed in version 2.2.2harsetargument added.

set_charset (charsej
Set the character set of the payload t¢barset which can either be aCharset instance (see
email.Charset), astring naming a character setNwne. Ifitis a string, it will be converted to €harset
instance. Itharsetis None, thecharset parameter will be removed from ti@antent-Type: header. Anything
else will generate aypeError

The message will be assumed to be of typea/* encoded withcharset.input_charset . It will be
converted tacharset.output_charset and encoded properly, if needed, when generating the plain text
representation of the message. MIME head®giisE-Version:, Content-Type:, Content-Transfer-Encoding:) will

be added as needed.

New in version 2.2.2.

get_charset ()
Return theCharset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers. Note
that there are some semantic differences between these methods and a normal mapping (i.e. dictionary) interface.
For example, in a dictionary there are no duplicate keys, but here there may be duplicate message headers. Also,
in dictionaries there is no guaranteed order to the keys returnédys() , butin aMessage object, headers are

always returned in the order they appeared in the original message, or were added to the message later. Any header
deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.
Note that in all cases, any envelope header present in the message is not included in the mapping interface.

_len__ ()
Return the total number of headers, including duplicates.

__contains__ (namg
Return true if the message object has a field nangde Matching is done case-insensitively amameshould
not include the trailing colon. Used for tie operator, e.g.:

if ‘'message-id’ in myMessage:
print 'Message-ID:’, myMessage['message-id’]

__getitem__ (nam§
Return the value of the named header fieldmeshould not include the colon field separator. If the header is
missing,None is returned; &eyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field values
will be returned is undefined. Use tiget_all() method to get the values of all the extant named headers.

__setitem__ (name, val
Add a header to the message with field namaeneand valueval. The field is appended to the end of the
message'’s existing fields.

Note that this doesot overwrite or delete any existing header with the same name. If you want to ensure that
the new header is the only one present in the message with fieldmemmezdelete the field first, e.g.:

4 2 email — An email and MIME handling package

del msg['subject’]
msg['subject’] = 'Python roolz!’

__delitem__ (namg
Delete all occurrences of the field with namamefrom the message’s headers. No exception is raised if the
named field isn’t present in the headers.

has_key (namg
Return true if the message contains a header field naraee otherwise return false.

keys ()
Return a list of all the message’s header field names.

values ()
Return a list of all the message’s field values.

items ()
Return a list of 2-tuples containing all the message’s field headers and values.

get (name{, failobj])
Return the value of the named header field. This is identical getitem__ () except that optiondhilobj
is returned if the named header is missing (defaultddoe).

Here are some additional useful methods:

get_all (namd, failobj])
Return a list of all the values for the field hamedme If there are no such named headers in the message,
failobj is returned (defaults thlone).

add_header (_name,value, **_paramg
Extended header setting. This method is similar teetitem__ () except that additional header parameters
can be provided as keyword argumentsameis the header field to add andalueis theprimary value for the
header.

For each item in the keyword argument dictiongparams the key is taken as the parameter name, with un-
derscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter will be
added akey="value" unless the value islone, in which case only the key will be added.

Here’s an example:

msg.add_header('Content-Disposition’, 'attachment’, filename="bud.qgif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace_header (_name,valug
Replace a header. Replace the first header found in the message that medoigeretaining header order and
field name case. If no matching header was fouri€egError s raised.

New in version 2.2.2.

get_content_type 0
Return the message’s content type. The returned string is coerced to lower case of thaifaype/subtype. If
there was nontent-Type: header in the message the default type as givegetbydefault_type() will
be returned. Since according to RFC 2045, messages always have a defaudetypentent_type()
will always return a value.

RFC 2045 defines a message’s default type teekiplain unless it appears insidenaultipart/digest container,
in which case it would benessage/rfc822. If the Content-Type: header has an invalid type specification, RFC
2045 mandates that the default typetdoa/plain.

New in version 2.2.2.

2.1 Representing an email message 5

get_content_maintype 0
Return the message’s main content type. This isithiatype part of the string returned byet _content_-
type()
New in version 2.2.2.

get_content_subtype 0
Return the message’s sub-content type. This isstivgype part of the string returned bget_content_-
type()
New in version 2.2.2.

get_default_type 0
Return the default content type. Most messages have a default content tggreptfin, except for messages
that are subparts ofiultipart/digest containers. Such subparts have a default content typesfage/rfc822.

New in version 2.2.2.

set_default_type (ctype
Set the default content typetypeshould either beext/plain or message/rfc822, although this is not enforced.
The default content type is not stored in thentent-Type: header.

New in version 2.2.2.

get_params ([failobj[, heade[, unquotd]])
Return the messageGontent-Type: parameters, as a list. The elements of the returned list are 2-tuples of
key/value pairs, as split on thesign. The left hand side of the=" is the key, while the right hand side is the
value. If there is no=’ sign in the parameter the value is the empty string, otherwise the value is as described
in get_param() and is unquoted if optionalnquoteis True (the default).

Optionalfailobj is the object to return if there is nGontent-Type: header. Optionaheaderis the header to
search instead d@fontent-Type:.

Changed in version 2.2.8nquoteargument added.

get_param (paran{, failobj[, heade[, unquote]]])
Return the value of th€ontent-Type: header’s parametgaramas a string. If the message hasGuntent-Type:
header or if there is no such parameter, tfalobj is returned (defaults thione).

Optionalheaderif given, specifies the message header to use insteadmént-Type:.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the
parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of t{eHARSET,
LANGUAGE, VALUE) Note that bothCHARSETand LANGUAGEan beNone, in which case you should
conside’VALUEto be encoded in thes-ascii charset. You can usually ignotANGUAGE

If your application doesn't care whether the parameter was encoded as in RFC 2231, you can collapse the
parameter value by callingmail.Utils.collapse_rfc2231_value() , passing in the return value
from get_param() . This will return a suitably decoded Unicode string whn the value is a tuple, or the
original string unquoted if it isn’t. For example:

rawparam = msg.get_param('foo’)

param = email.Utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, ¥AtheEitem in the 3-tuple) is always unquoted,
unlessunquotels set toFalse .

Changed in version 2.2.2nquoteargument added, and 3-tuple return value possible.

set_param (param, valué, heade[, requote[, charse[, Ianguage]]]])
Set a parameter in th@ontent-Type: header. If the parameter already exists in the header, its value will be
replaced withvalue If the Content-Type: header as not yet been defined for this message, it will be set to
text/plain and the new parameter value will be appended as per RFC 2045.

Optionalheaderspecifies an alternative headeQontent-Type:, and all parameters will be quoted as necessary
unless optionalequoteis False (the default isTrue).

6 2 email — An email and MIME handling package

If optional charsetis specified, the parameter will be encoded according to RFC 2231. Oplaomnalage
specifies the RFC 2231 language, defaulting to the empty string. datisetandlanguageshould be strings.

New in version 2.2.2.

del_param (paran{, heade[, requoté])
Remove the given parameter completely from @latent-Type: header. The header will be re-written in place
without the parameter or its value. All values will be quoted as necessary ueipsseis False (the default
is True). Optionalheaderspecifies an alternative tontent-Type:.

New in version 2.2.2.

set_type (type[, headel][, requoté)
Set the main type and subtype for thentent-Type: headertypemust be a string in the formmaintype/subtype,
otherwise &/alueError s raised.

This method replaces theontent-Type: header, keeping all the parameters in placeedjfuoteis False , this
leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the default).

An alternative header can be specified in leaderargument. When th€ontent-Type: header is set BIME-
Version: header is also added.

New in version 2.2.2.

get_filename ([failobj])
Return the value of thBlename parameter of th€ontent-Disposition: header of the message. If the header
does not have flename parameter, this method falls back to looking for theme parameter. If neither
is found, or the header is missing, thiilobj is returned. The returned string will always be unquoted as per
Utils.unquote()

get_boundary ([failobj])
Return the value of thboundary parameter of th€ontent-Type: header of the message, failobj if either
the header is missing, or has boundary parameter. The returned string will always be unquoted as per
Utils.unquote()

set_boundary (boundary
Set theboundary parameter of th€ontent-Type: header tdoundary set_boundary() will always quote
boundaryif necessary. AeaderParseError is raised if the message object hasGumtent-Type: header.

Note that using this method is subtly different than deleting theColdent-Type: header and adding a new one
with the new boundary viadd_header() , becausset_boundary() preserves the order of ti@ntent-
Type: header in the list of headers. However, it doespreserve any continuation lines which may have been
present in the originalontent-Type: header.

get_content_charset ([failobj])
Return thecharset parameter of th€ontent-Type: header, coerced to lower case. If there isioatent-Type:
header, or if that header has doarset parameterfailobj is returned.

Note that this method differs fromget_charset() which returns theCharset instance for the default
encoding of the message body.

New in version 2.2.2.

get _charsets ([failobj])
Return a list containing the character set names in the message. If the messagéijma, then the list will
contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of tfearset parameter in th€ontent-Type: header
for the represented subpart. However, if the subpart ha@ntent-Type: header, ne@harset parameter, or is
not of thetext main MIME type, then that item in the returned list will Esglob;.

walk ()
Thewalk() method is an all-purpose generator which can be used to iterate over all the parts and subparts of a
message object tree, in depth-first traversal order. You will typicallywsdle() as the iterator in for loop;
each iteration returns the next subpart.

2.1 Representing an email message 7

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():

. print part.get_content_type()
multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

Message objects can also optionally contain two instance attributes, which can be used when generating the plain
text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers, and the
first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader because it falls
outside the standard MIME armor. However, when viewing the raw text of the message, or when viewing the
message in a non-MIME aware reader, this text can become visible.

The preambleattribute contains this leading extra-armor text for MIME documents. WheRadnger discov-

ers some text after the headers but before the first boundary string, it assigns this text to the naesegels
attribute. When th&enerator is writing out the plain text representation of a MIME message, and it finds the
message haseambleattribute, it will write this text in the area between the headers and the first boundary.
Seeemail.Parser andemail.Generator for detalils.

Note that if the message object has no preamblepib@mbleattribute will beNone.

epilogue
The epilogueattribute acts the same way as theambleattribute, except that it contains text that appears
between the last boundary and the end of the message.

One note: when generating the flat text fomaltipart message that has repilogue (using the standard
Generator class), no newline is added after the closing boundary line. If the message object épis an
logueand its value does not start with a newline, a newline is printed after the closing boundary. This seems a
little clumsy, but it makes the most practical sense. The upshot is that if you want to ensure that a newline get
printed after your closingnultipart boundary, set thepilogueto the empty string.

defects
Thedefectsattribute contains a list of all the problems found when parsing this messagem@éd=rrors
for a detailed description of the possible parsing defects.

New in version 2.4.

Deprecated methods

Changed in version 2.4: Treeld_payload() = method was removed; use thgach() method instead.

The following methods are deprecated. They are documented here for completeness.

get_type ([failobj])
Return the message’s content type, as a string of the fiagimtype/subtype as taken from th&€ontent-Type:
header. The returned string is coerced to lowercase.

If there is noContent-Type: header in the messadajlobj is returned (defaults thlone).
Deprecated since release 2.2.RIse theget_content_type() method instead.
get_main_type ([failobj])

Return the messagefsain content type. This essentially returns timaintypepart of the string returned by
get type() , with the same semantics ftailob;.

8 2 email — An email and MIME handling package

Deprecated since release 2.2.Rse theget_content_maintype() method instead.

get_subtype ([failobj])
Return the message’s sub-content type. This essentially returaghibgepart of the string returned lyet_-
type() , with the same semantics ftailobj.

Deprecated since release 2.2.RIse theget _content_subtype() method instead.

2.2 Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together atiach() andset_payload() calls, or they can be created
by parsing a flat text representation of the email message.

Theemail package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you Message

instance of the object structure. For simple, non-MIME messages the payload of this root object will likely be a
string containing the text of the message. For MIME messages, the root object will Tetwenfrom its is_-

multipart() method, and the subparts can be accessed vigeth@ayload() andwalk() methods.

There are actually two parser interfaces available for use, the cRaier API and the increment&leedParser

API. The classidarser API is fine if you have the entire text of the message in memory as a string, or if the entire
message lives in a file on the file systdreedParser is more appropriate for when you're reading the message from
a stream which might block waiting for more input (e.g. reading an email message from a sockéetiarser

can consume and parse the message incrementally, and only returns the root object when you close'the parser

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection betweerethail package’s bundled parser and essage class,
SO your custom parser can create message object trees any way it finds necessary.

FeedParser API

New in version 2.4.

The FeedParser provides an API that is conducive to incremental parsing of email messages, such as would be
necessary when reading the text of an email message from a source that can block (e.g. a sodke€dHéeser

can of course be used to parse an email message fully contained in a string or a file, but th@atassic APl may

be more convenient for such use cases. The semantics and results of the two parser APIs are identical.

TheFeedParser ’'s APl is simple; you create an instance, feed it a bunch of text until there’s no more to feed it, then
close the parser to retrieve the root message objectFébdParser is extremely accurate when parsing standards-
compliant messages, and it does a very good job of parsing non-compliant messages, providing information about how
a message was deemed broken. It will populate a message obfetitsattribute with a list of any problems it found

in a message. See thenail.Errors module for the list of defects that it can find.

Here is the API for thé&eedParser

classFeedParser ([,factory])
Create &eedParser instance. Optionalfactoryis a no-argument callable that will be called whenever a new
message object is needed. It defaults todhmil.Message.Message class.

feed (data)
Feed theFeedParser some more datadatashould be a string containing one or more lines. The lines can
be partial and th&eedParser will stitch such partial lines together properly. The lines in the string can have
any of the common three line endings, carriage return, newline, or carriage return and newline (they can even
be mixed).

1As of email package version 3.0, introduced in Python 2.4, the cl®siser was re-implemented in terms of tif@edParser , so the
semantics and results are identical between the two parsers.

2.2 Parsing email messages 9

close ()
Closing aFeedParser completes the parsing of all previously fed data, and returns the root message object.
It is undefined what happens if you feed more data to a clbsedParser .

Parser class API

The Parser provides an API that can be used to parse a message when the complete contents of the message are
available in a string or file. Themail.Parser module also provides a second class, catkxhderParser

which can be used if you're only interested in the headers of the meskiegelerParser can be much faster in

these situations, since it does not attempt to parse the message body, instead setting the payload to the raw body as a
string. HeaderParser has the same API as tiRarser class.

classParser ([,class[, strict]])
The constructor for thBarser class takes an optional argumecifass This must be a callable factory (such as
a function or a class), and it is used whenever a sub-message object needs to be created. It ddé&adtgy®o
(seeemail.Message). The factory will be called without arguments.

The optionalstrict flag is ignored. Deprecated since release 2.4Because th&arser class is a backward
compatible APl wrapper around the new-in-PythonReédParser , all parsing is effectively non-strict. You
should simply stop passingsérict flag to theParser constructor.

Changed in version 2.2.2: Tistrict flag was added. Changed in version 2.4 $trect flag was deprecated.
The other publidParser methods are:

parse (fp[, headersonl])
Read all the data from the file-like objdpt parse the resulting text, and return the root message ofgentist
support both theeadline() and theread() methods on file-like objects.

The text contained ifp must be formatted as a block of RFC 2822 style headers and header continuation lines,
optionally preceded by a envelope header. The header block is terminated either by the end of the data or
by a blank line. Following the header block is the body of the message (which may contain MIME-encoded
subparts).

Optionalheadersonlys as with theparse() method.
Changed in version 2.2.2: Theadersonlylag was added.

parsestr (text[, headersonl})
Similar to theparse() method, except it takes a string object instead of a file-like object. Calling this method
on a string is exactly equivalent to wrappitextin a StringlO instance first and callingarse()

Optionalheadersonlys a flag specifying whether to stop parsing after reading the headers or not. The default
is False , meaning it parses the entire contents of the file.

Changed in version 2.2.2: Theeadersonlylag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-¢ewall package namespace.

message_from_string (s[, ,class[, strict]])
Return a message object structure from a string. This is exactly equival@atrser().parsestr(s)
Optional_classandstrict are interpreted as with thearser class constructor.

Changed in version 2.2.2: Tis#rict flag was added.

message_from_file (fp[, ,class[, strict]])
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp) . Optional_classandstrict are interpreted as with thHearser class constructor.

Changed in version 2.2.2: Tlsrict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

10 2 email — An email and MIME handling package

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

e Most nonmultipart type messages are parsed as a single message object with a string payload. These objects
will return False for is_multipart() . Theirget_payload() method will return a string object.

e All multipart type messages will be parsed as a container message object with a list of sub-message objects
for their payload. The outer container message will refline for is_multipart() and theirget_-
payload() method will return the list oMessage subparts.

e Most messages with a content typenadssage/* (e.g. message/delivery-status andmessage/rfc822) will also
be parsed as container object containing a list payload of length 1. iBhemnultipart() method will
returnTrue . The single element in the list payload will be a sub-message object.

e Some non-standards compliant messages may not be internally consistent aboutitipait-edness. Such

messages may have Gontent-Type: header of typemultipart, but theiris_multipart() method may
return False . If such messages were parsed with freedParser , they will have an instance of the
MultipartinvariantViolationDefect class in theidefectsattribute list. Seemail.Errors for
details.

2.3 Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message viartiiplib module or thenntplib

module, or print the message on the console. Taking a message object structure and producing a flat text document is
the job of theGenerator class.

Again, as with theemail.Parser module, you aren'’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure viRénser class, and back to flat text, is idempotent (the

input is identical to the output).

Here are the public methods of tenerator class:

classGenerator (outfp[, manglefronL[, maxheaderle]1])
The constructor for th&enerator class takes a file-like object callexitfp for an argument.outfp must
support thevrite() method and be usable as the output file in a Python extended print statement.

Optionalmanglefrom._ is a flag that, wheffrue , puts a >’ character in front of any line in the body that starts
exactly as From ’, i.e. From followed by a space at the beginning of the line. This is the only guaranteed
portable way to avoid having such lines be mistaken for a Unix mailbox format envelope header separator (see
WHY THE CONTENT-LENGTH FORMAT IS BADfor details). manglefrom_ defaults toTrue , but you

might want to set this t&alse if you are not writing Unix mailbox format files.

Optionalmaxheaderlerspecifies the longest length for a non-continued header. When a header line is longer
thanmaxheaderlerfin characters, with tabs expanded to 8 spaces), the header will be split as defined in the
email.Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but not
required) by RFC 2822.

The other publicGGenerator methods are:

2.3 Generating MIME documents 11

flatten (msg{, unixfrom])
Print the textual representation of the message object structure rootestytt the output file specified when
the Generator instance was created. Subparts are visited depth-first and the resulting text will be properly
MIME encoded.

Optionalunixfromis a flag that forces the printing of the envelope header delimiter before the first RFC 2822
header of the root message object. If the root object has no envelope header, a standard one is crafted. By
default, this is set téalse to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed.
New in version 2.2.2.

clone (fp)
Return an independent clone of tid&nerator instance with the exact same options.

New in version 2.2.2.

write (S)
Write the strings to the underlying file object, i.eoutfp passed tdsenerator ’'s constructor. This provides
just enough file-like API folGenerator instances to be used in extended print statements.

As a convenience, see the methMisssage.as_string() andstr(aMessage) ,a.k.a.Message.__str_-
_() , which simplify the generation of a formatted string representation of a message object. For more detail, see
email.Message

The email.Generator module also provides a derived class, call®ecodedGenerator which is like the
Generator base class, except that naxt parts are substituted with a format string representing the part.

classDecodedGenerator (outfp{, manglefrom,[, maxheaderle[] fmt]]])
This class, derived fronGenerator walks through all the subparts of a message. If the subpart is of main
typetext, then it prints the decoded payload of the subpart. Optiamainglefrom. andmaxheaderlemre as
with theGenerator base class.

If the subpart is not of main typext, optionalfmtis a format string that is used instead of the message payload.
fmtis expanded with the following keyword€6{(keyword)s '’ format:

otype — Full MIME type of the nontext part

emaintype — Main MIME type of the nortext part

esubtype — Sub-MIME type of the nonext part

efilename — Filename of the norext part

edescription — Description associated with the naext part
eencoding — Content transfer encoding of the n@st part

The default value fofmtis None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Deprecated methods

The following methods are deprecateceimail version 2. They are documented here for completeness.

_call (msg[, unixfrom])
This method is identical to thigatten() method.
Deprecated since release 2.2.RIse theflatten() method instead.

12 2 email — An email and MIME handling package

2.4 Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add@essage objects,

move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creaMessage instances, adding attachments and all the appropriate
headers manually. For MIME messages though etimail package provides some convenient subclasses to make
things easier. Each of these classes should be imported from a module with the same name as the class, from within
theemail package. E.g.:

import email.MIMEImage.MIMEImage

or

from email. MIMEText import MIMEText

Here are the classes:

classMIMEBase(_maintype, subtype, **paramg
This is the base class for all the MIME-specific subclassédasfsage . Ordinarily you won't create instances
specifically of MIMEBase, although you could MIMEBase is provided primarily as a convenient base class
for more specific MIME-aware subclasses.

_maintypeis theContent-Type: major type (e.gtext orimage), and_subtypds theContent-Type: minor type (e.g.
plain or gif). _paramsis a parameter key/value dictionary and is passed direcMessage.add_header()

The MIMEBase class always adds@ontent-Type: header (based amaintype _subtypeand_paramg, and a
MIME-Version: header (always set thO).

classMIMENonMultipart ()
A subclass oMIMEBase, this is an intermediate base class for MIME messages that amauttigart. The
primary purpose of this class is to prevent the use ofattach() method, which only makes sense for
multipart messages. kittach() s called, avultipartConversionError exception is raised.

New in version 2.2.2.

classMIMEMultipart ~ ([subtypé, boundar)[, ,subpart:{, ,params]]]])
A subclass oMIMEBase, this is an intermediate base class for MIME messages thata@tigart. Optional
_subtypedefaults tomixed, but can be used to specify the subtype of the messageonfent-Type: header of
multipart/_subtypewill be added to the message objectMME-Version: header will also be added.

Optionalboundaryis the multipart boundary string. Wheédone (the default), the boundary is calculated when
needed.

_subpartsis a sequence of initial subparts for the payload. It must be possible to convert this sequence to a list.
You can always attach new subparts to the message by usiMggsage.attach() method.

Additional parameters for theontent-Type: header are taken from the keyword arguments, or passed into the
_paramsargument, which is a keyword dictionary.

New in version 2.2.2.

classMIMEAudio (,audiodata[, ,subtyp(E, ,encode[, * ,params]]])
A subclass oMIMENonMultipart , theMIMEAudio class is used to create MIME message objects of major
type audio. _audiodatais a string containing the raw audio data. If this data can be decoded by the standard
Python modulesndhdr , then the subtype will be automatically included in tentent-Type: header. Other-
wise you can explicitly specify the audio subtype via teabtypeparameter. If the minor type could not be

2.4 Creating email and MIME objects from scratch 13

guessed andsubtypewas not given, thefiypeError is raised.

Optional_encoderis a callable (i.e. function) which will perform the actual encoding of the audio data for trans-
port. This callable takes one argument, which isMI&EAudio instance. It should usget payload()

and set_payload() to change the payload to encoded form. It should also addCanyent-Transfer-

Encoding: or other headers to the message object as necessary. The default encoding is base64. See the
email.Encoders ~ module for a list of the built-in encoders.

_paramsare passed straight through to the base class constructor.

classMIMEImage(,imagedatzﬁ, ,subtypé, ,encode[, *x ,params]]])
A subclass oMIMENonMultipart , theMIMEImage class is used to create MIME message objects of major
typeimage. _imagedatais a string containing the raw image data. If this data can be decoded by the standard
Python modulemghdr , then the subtype will be automatically included in thentent-Type: header. Other-
wise you can explicitly specify the image subtype via thebtypeparameter. If the minor type could not be
guessed andsubtypewas not given, thefiypeError is raised.

Optional _encoderis a callable (i.e. function) which will perform the actual encoding of the image data

for transport. This callable takes one argument, which isMi€IEImage instance. It should usget -

payload() andset payload() to change the payload to encoded form. It should also addCantent-
Transfer-Encoding: or other headers to the message object as necessary. The default encoding is base64. See the
email.Encoders module for a list of the built-in encoders.

_paramsare passed straight through to MM8VEBase constructor.

classMIMEMessage(,msg[, ,subtype])
A subclass oMIMENonMultipart , the MIMEMessage class is used to create MIME objects of main type
message. _msgis used as the payload, and must be an instance of Massage (or a subclass thereof),
otherwise alrypeError s raised.

Optional_subtypesets the subtype of the message; it defaultécB22.

classMIMEText (,text[, ,subtypé, ,charsel]])
A subclass oMIMENonMultipart , theMIMEText class is used to create MIME objects of major tygpe.
_textis the string for the payloadsubtypéas the minor type and defaults piain. _charsetis the character set of
the text and is passed as a parameter tathdENonMultipart ~ constructor; it defaults tas-ascii . No
guessing or encoding is performed on the text data.

Changed in version 2.4: The previously deprecamttodingargument has been removed. Encoding happens
implicitly based on thecharsetargument.

2.5 Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822 standard
which came into widespread use at a time when most email was composedioftharacters only. RFC 2822 is a
specification written assuming email contains only 7AstI1 characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific char-
acter sets can now be used in email messages. The base standard still requires email messages to be transferred using
only 7-bitascii characters, so a slew of RFCs have been written describing how to encode email containksgnon-
characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047, and RFC 2231.
Theemail package supports these standards iriitgil. Header andemail.Charset modules.

If you want to include norsscii characters in your email headers, say in$hbject: or To: fields, you should use the
Header class and assign the field in tMessage object to an instance ¢ddeader instead of using a string for the
header value. For example:

14 2 email — An email and MIME handling package

>>> from email.Message import Message
>>> from email.Header import Header
>>> msg = Message()

>>> h = Header('p\xf6stal’, 'iso-8859-1’)
>>> msg['Subject] = h

>>> print msg.as_string()

Subject: =?is0-8859-1?¢?p=F6stal?=

Notice here how we wanted ttgubject: field to contain a nomscii character? We did this by creatingHeader
instance and passing in the character set that the byte string was encoded in. When the suldssgagetinstance

was flattened, th8ubject: field was properly RFC 2047 encoded. MIME-aware mail readers would show this header
using the embedded 1SO-8859-1 character.

New in version 2.2.2.
Here is theHeader class description:

classHeader ([s[charse[, maxlinelerﬁ, heademame[, continuationws[, errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optionals is the initial header value. Ilone (the default), the initial header value is not set. You can later
append to the header witippend() method calls.s may be a byte string or a Unicode string, but see the
append() documentation for semantics.

Optional charsetserves two purposes: it has the same meaning ashhesetargument to theppend()
method. It also sets the default character set for all subsegppenhd() calls that omit theeharsetargument.
If charsetis not provided in the constructor (the default), tieeascii character set is used bothssinitial
charset and as the default for subsequgend() calls.

The maximum line length can be specified explicit maxlinelen For splitting the first line to a shorter value
(to account for the field header which isn’t includedsjie.g. Subject:) pass in the name of the field header-
name The defaulmaxlineleris 76, and the default value fbeadernameis None, meaning it is not taken into
account for the first line of a long, split header.

Optional continuationws must be RFC 2822-compliant folding whitespace, and is usually either a space or a
hard tab character. This character will be prepended to continuation lines.

Optionalerrorsis passed straight through to tappend() method.

append (s[, charse[, errors]])
Append the string to the MIME header.

Optionalcharset if given, should be £harset instance (seemail.Charset) or the name of a character
set, which will be converted to@harset instance. A value dllone (the default) means that tltharsetgiven
in the constructor is used.

s may be a byte string or a Unicode string. If it is a byte string (istnstance(s, str) is true), then
charsetis the encoding of that byte string, antlaicodeError will be raised if the string cannot be decoded
with that character set.

If sis a Unicode string, thenharsetis a hint specifying the character set of the characters in the string. In
this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string will be
encoded using the following charsets in ordes:ascii , thecharsethint, utf-8 . The first character set to

not provoke &JnicodeError is used.

Optionalerrorsis passed through to amyicode() or ustr.encode() call, and defaults to “strict”.
encode ([splitchars])

Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating non-
ASCII parts in base64 or quoted-printable encodings. Optigpiigtharsis a string containing characters to split

2.5 Internationalized headers 15

long ASCII lines on, in rough support of RFC 2822ighest level syntactic break3 his doesn'’t affect RFC
2047 encoded lines.

TheHeader class also provides a number of methods to support standard operators and built-in functions.

str ()
A synonym forHeader.encode() . Useful forstr(aHeader)

__unicode__ ()
A helper for the built-inunicode() function. Returns the header as a Unicode string.

__eq__ (othen
This method allows you to compare twieader instances for equality.
__ne__ (other

This method allows you to compare twiteader instances for inequality.
Theemail. Header module also provides the following convenient functions.

decode_header (headej
Decode a message header value without converting the character set. The header vakegdistin

This function returns a list ofdecoded_string, charset) pairs containing each of the decoded parts
of the headercharsetis None for non-encoded parts of the header, otherwise a lower case string containing the
name of the character set specified in the encoded string.

Here’s an example:

>>> from email.Header import decode_header
>>> decode_header('=?is0-8859-1?q?p=F6stal?=")
[(p\xféstal’, 'is0-8859-1")]

make_header (decodette({, maxlinelerli, headername[, continuationws]]])
Create dHeader instance from a sequence of pairs as returneddmpde_header()

decode_header() takes a header value string and returns a sequence of pairs of the (devaded_-
string, charset) wherecharsetis the name of the character set.

This function takes one of those sequence of pairs and retuthsader instance. Optionaimaxlinelen
headername andcontinuationwsare as in thédeader constructor.

2.6 Representing character sets

This module provides a clagdharset for representing character sets and character set conversions in email mes-
sages, as well as a character set registry and several convenience methods for manipulating this registry. Instances of
Charset are used in several other modules within émsail package.

New in version 2.2.2.

classCharset ([inputcharset])
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in an
email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or bodies.
Certain character sets must be converted outright, and are not allowed in email.

Optionalinput.charsetis as described below; it is always coerced to lower case. After being alias normalized
it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,

16 2 email — An email and MIME handling package

and output conversion codec to be used for the character set. For exanmmpeiti€harsetis iso-8859-1

then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary. If
input.charsetiseuc-jp , then headers will be encoded with base64, bodies will not be encoded, but output text
will be converted from theuc-jp character set to thiso-2022-jp character set.

Charset instances have the following data attributes:

input_charset
The initial character set specified. Common aliases are converted toft@al email names (e.datin_1
is converted taso-8859-1). Defaults to 7-bitus-ascii

header_encoding
If the character set must be encoded before it can be used in an email header, this attribute will be set to
Charset.QP (for quoted-printable)Charset.BASE64 (for base64 encoding), @harset. SHORTEST
for the shortest of QP or BASE64 encoding. Otherwise, it wilNmme.

body_encoding
Same aseaderencoding but describes the encoding for the mail message’s body, which indeed may be differ-
ent than the header encodir@harset. SHORTEST is not allowed fobody.encoding

output_charset
Some character sets must be converted before they can be used in email headers or bodieputfdharset
is one of them, this attribute will contain the name of the character set output will be converted to. Otherwise, it
will be None.

input_codec
The name of the Python codec used to converirthet charsetto Unicode. If no conversion codec is necessary,
this attribute will beNone.

output_codec
The name of the Python codec used to convert Unicode toutmutcharset If no conversion codec is neces-
sary, this attribute will have the same value asitiit codec

Charset instances also have the following methods:

get_body _encoding ()
Return the content transfer encoding used for body encoding.

This is either the stringquoted-printable ' or ‘base64 ' depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being encoded.
The function should then set titntent-Transfer-Encoding: header itself to whatever is appropriate.

Returns the stringquoted-printable " if body.encodingis QP, returns the stringbase64 ' if body-
encodings BASE64, and returns the string’bit ' otherwise.

convert (9
Convert the string from theinput.codecto theoutputcodec

to_splittable (9
Convert a possibly multibyte string to a safely splittable formsas.the string to split.

Uses theénput.codecto try and convert the string to Unicode, so it can be safely split on character boundaries
(even for multibyte characters).

Returns the string as-is if it isn’'t known how to convetb Unicode with thenput charset

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
‘U+FFFD.

from_splittable (ustr[, to,output])
Convert a splittable string back into an encoded strirgdt is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

2.6 Representing character sets 17

Characters that could not be converted from Unicode will be replaced with an appropriate character (usually
l?!).

If to_outputis True (the default), usesutputcodecto convert to an encoded format.tif outputis False , it
usesinput.codec

get_output_charset 0
Return the output character set.

This is theoutputcharsetattribute if that is noiNone, otherwise it isnput charset

encoded_header_len ()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encoding.

header_encode (s[, converﬂ)
Header-encode the strirsg

If convertis True , the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-ldgaller class to deal with these issues (see
email.Header). convertdefaults toFalse .

The type of encoding (base64 or quoted-printable) will be based dmethderencodingattribute.

body encode (s[, convert])
Body-encode the string

If convertis True (the default), the string will be converted from the input charset to output charset automat-
ically. Unlike header_encode() , there are no issues with byte boundaries and multibyte charsets in email
bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based doitieencodingattribute.

TheCharset class also provides a number of methods to support standard operations and built-in functions.

str ()
Returnsnput.charsetas a string coerced to lower caserepr__() isan alias for__str_ ()

__eq__ (othen
This method allows you to compare té@harset instances for equality.
__ne__ (othen

This method allows you to compare t@harset instances for inequality.

The email.Charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

add_charset (charse[, headerenc{, bodyen({, outputcharseﬂ]])
Add character properties to the global registry.

charsetis the input character set, and must be the canonical name of a character set.

Optional headerenc and bodyenc is either Charset.QP for quoted-printable Charset.BASE64 for
base64 encodingzharset. SHORTEST for the shortest of quoted-printable or base64 encodindyare
for no encodingSHORTESTSs only valid forheaderenc The default ifNone for no encoding.

Optionaloutputcharsetis the character set that the output should be in. Conversions will proceed from input
charset, to Unicode, to the output charset when the me@inadset.convert() is called. The default is to
output in the same character set as the input.

Both input.charsetandoutputcharsetmust have Unicode codec entries in the module’s character set-to-codec
mapping; useadd_codec() to add codecs the module does not know about. Seedbecs module’s
documentation for more information.

The global character set registry is kept in the module global dictioBaI&RSETS

18 2 email — An email and MIME handling package

add_alias (alias, canonica)
Add a character set aliaslias is the alias name, e.datin-1 . canonicalis the character set's canonical
name, e.giso-8859-1

The global charset alias registry is kept in the module global dictioARBASES.

add_codec (charset, codecname
Add a codec that map characters in the given character set to and from Unicode.

charsetis the canonical name of a character setdecnamés the name of a Python codec, as appropriate for
the second argument to thaicode() built-in, or to theencode() method of a Unicode string.

2.7 Encoders

When creatindVlessage objects from scratch, you often need to encode the payloads for transport through compliant
mail servers. This is especially true fiarage/* andtext/* type messages containing binary data.

The email package provides some convenient encodings iElitsoders module. These encoders are actually

used by theMIMEAudio andMIMEImage class constructors to provide default encodings. All encoder functions

take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset the
payload to this newly encoded value. They should also set¢hent-Transfer-Encoding: header as appropriate.

Here are the encoding functions provided:

encode_quopri (msg
Encodes the payload into quoted-printable form and sets Qbetent-Transfer-Encoding: header to
guoted-printable 2, This is a good encoding to use when most of your payload is normal printable data,
but contains a few unprintable characters.

encode_base64 (msg
Encodes the payload into base64 form and set<tgent-Transfer-Encoding: header tadbase64 . This is
a good encoding to use when most of your payload is unprintable data since it is a more compact form than
quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode_7or8bit (msg
This doesn't actually modify the message’s payload, but it does s&ldhent-Transfer-Encoding: header to
either7bit or8bit as appropriate, based on the payload data.

encode_noop (msg
This does nothing; it doesn’t even set thentent-Transfer-Encoding: header.

2.8 Exception and Defect classes

The following exception classes are defined inehgail.Errors module:

exceptionMessageError ()
This is the base class for all exceptions that ¢éneail package can raise. It is derived from the standard
Exception class and defines no additional methods.

exceptionMessageParseError ()
This is the base class for exceptions thrown byRheser class. It is derived fronMessageError

exceptionHeaderParseError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from thRarser.parse() or Parser.parsestr() methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of the
message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the headers

2Note that encoding witencode_quopri() also encodes all tabs and space characters in the data.

2.7 Encoders 19

which is neither a header or a continuation line.

exceptionBoundaryError ()
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError . It can be raised from thRarser.parse() or Parser.parsestr() methods.

Situations where it can be raised include not being able to find the starting or terminating boundamyltin a
part/* message when strict parsing is used.

exceptionMultipartConversionError 0
Raised when a payload is added toMessage object usingadd_payload() , but the payload
is already a scalar and the messag€sntent-Type: main type is not eithemultipart or missing.
MultipartConversionError multiply inherits fromMessageError and the built-inTypeError

SinceMessage.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if tlzdtach() method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

Here's the list of the defects that tReedParser can find while parsing messages. Note that the defects are added
to the message where the problem was found, so for example, if a message nestedningtider#alternative had a
malformed header, that nested message object would have a defect, but the containing messages would not.

All defect classes are subclassed fremail.Errors.MessageDefect , but this class imotan exception!

New in version 2.4: All the defect classes were added.

e NoBoundarylnMultipartDefect — A message claimed to be a multipart, but hatdseundary parameter.

e StartBoundaryNotFoundDefect — The start boundary claimed in ti@®ntent-Type: header was never
found.

e FirstHeaderLinelsContinuationDefect — The message had a continuation line as its first header
line.

¢ MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header block.

¢ MalformedHeaderDefect — A header was found that was missing a colon, or was otherwise malformed.

e MultipartinvariantViolationDefect — A message claimed to benaultipart, but no subparts were
found. Note that when a message has this defeds_itaultipart() method may return false even though

its content type claims to beultipart.

2.9 Miscellaneous utilities

There are several useful utilities provided in #mail.Utils module:

quote (str)
Return a new string with backslashes dtr replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote (str)
Return a new string which is amquotedversion ofstr. If str ends and begins with double quotes, they are
stripped off. Likewise ifstr ends and begins with angle brackets, they are stripped off.

parseaddr (addres}
Parse address — which should be the value of some address-containing field Soichrase: — into its con-
stituentrealnameandemail addresparts. Returns a tuple of that information, unless the parse fails, in which
case a 2-tuple of’,) is returned.

20 2 email — An email and MIME handling package

formataddr (pair)

The inverse oparseaddr() , this takes a 2-tuple of the forfnealname, email_address) and re-
turns the string value suitable foffa: or Cc: header. If the first element phir is false, then the second element
is returned unmodified.

getaddresses (fieldvalue}

This method returns a list of 2-tuples of the form returnedobyseaddr()
header field values as might be returnedMisssage.get_all()
recipients of a message:

. fieldvaluesis a sequence of
. Here’s a simple example that gets all the

from email.Utils import getaddresses

tos = msg.get_all(to’, [])

ccs = msg.get_all(’ec’, [])

resent_tos = msg.get_all('resent-to’, [])

resent_ccs = msg.get_all(resent-cc’, [])

all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate (datd

Attempts to parse a date according to the rules in RFC 2822. however, some mailers don't follow that format as

specified, sparsedate() tries to guess correctly in such caseateis a string containing an RFC 2822 date,

such as'Mon, 20 Nov 1995 19:12:08 -0500" . If it succeeds in parsing the datearsedate()

returns a 9-tuple that can be passed directiyn@.mktime() ; otherwiseNone will be returned. Note that

fields 6, 7, and 8 of the result tuple are not usable.
parsedate tz (datg

Performs the same function parsedate() , but returns eithelone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directlytitoe.mktime() , and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time)f the input string has no timezone, the last
element of the tuple returnediMone. Note that fields 6, 7, and 8 of the result tuple are not usable.

mktime_tz (tuple

Turn a 10-tuple as returned Iparsedate_tz() into a UTC timestamp. It the timezone item in the tuple is
None, assume local time. Minor deficiencynktime_tz() interprets the first 8 elements ufple as a local
time and then compensates for the timezone difference. This may yield a slight error around changes in daylight

savings time, though not worth worrying about for common use.
formatdate ([timeva[, Iocaltime][, usegm]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted Htiye.gmtime()

and
time.localtime() , otherwise the current time is used.

Optionallocaltimeis a flag that whefTrue , interpretdimeval and returns a date relative to the local timezone

instead of UTC, properly taking daylight savings time into account. The defakllse meaning UTC is
used.

Optionalusegmis a flag that wheifrue , outputs a date string with the timezone as an ascii s@kIJ rather

than a numerie0000 . This is needed for some protocols (such as HTTP). This only applies lebaltimeis
False . New in version 2.4.

make_msgid ([idstring])

Returns a string suitable for an RFC 2822-complidassage-ID: header. Optionatistring if given, is a string
used to strengthen the uniqueness of the message id.

3Note that the sign of the timezone offset is the opposite of the sign diitieetimezone

variable for the same timezone; the latter variable
follows the POSIX standard while this module follows RFC 2822.

2.9 Miscellaneous utilities 21

decode _rfc2231 (9
Decode the string according to RFC 2231.

encode_rfc2231 (s[, charse[, Ianguage]])
Encode the string according to RFC 2231. Optionaharsetandlanguage if given is the character set name
and language name to use. If neither is giveis returned as-is. I€harsetis given butlanguageis not, the
string is encoded using the empty string language

collapse_rfc2231 value (value[, errors[, faIIbackcharsel]])
When a header parameter is encoded in RFC 2231 foiedsage.get_param() may return a 3-tuple
containing the character set, language, and valokapse_rfc2231 value() turns this into a unicode

string. Optionalerrors is passed to therrors argument of the built-irunicode() function; it defaults to
replace . Optionalfallback charsetspecifies the character set to use if the one in the RFC 2231 header is not
known by Python; it defaults tos-ascii

For convenience, if thealuepassed taollapse_rfc2231_value() is not a tuple, it should be a string
and it is returned unquoted.

decode_params (param$g
Decode parameters list according to RFC 22B4&ramsis a sequence of 2-tuples containing elements of the
form (content-type, string-value)

Changed in version 2.4: Trdump_address_pair() function has been removed; usemataddr() instead.

Changed in version 2.4: Tliecode() function has been removed; use theader.decode_header() method
instead.

Changed in version 2.4: Thencode() function has been removed; use theader.encode() = method instead.

2.10 Iterators

Iterating over a message object tree is fairly easy withMlessage.walk() =~ method. Theemail.lterators
module provides some useful higher level iterations over message object trees.

body_line_iterator (msg{, decodd)
This iterates over all the payloads in all the subpartsf returning the string payloads line-by-line. It skips
over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from a filecaslivge()
skipping over all the intervening headers.

Optionaldecodds passed through tdessage.get_payload()

typed_subpart_iterator (msg[, maintypé, subtypé])
This iterates over all the subpartsragg returning only those subparts that match the MIME type specified by
maintypeandsubtype

Note thatsubtypeis optional; if omitted, then subpart MIME type matching is done only with the main type.
maintypes optional too; it defaults teext.

Thus, by defaultyped_subpart_iterator() returns each subpart that has a MIME typeesf/*.

The following function has been added as a useful debugging tool. It shotilte considered part of the supported
public interface for the package.

_structure (msg[, fp[, Ievel]])
Prints an indented representation of the content types of the message object structure. For example:

22 2 email — An email and MIME handling package

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed
text/plain
text/plain
multipart/digest
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
message/rfc822
text/plain
text/plain

Optionalfp is a file-like object to print the output to. It must be suitable for Python’s extended print statement.
levelis used internally.

2.11 Package History

Version 1 of theemail package was bundled with Python releases up to Python 2.2.1. Version 2 was developed for
the Python 2.3 release, and backported to Python 2.2.2. It was also available as a separate distutils-based package, and
is compatible back to Python 2.1.

email version 3.0 was released with Python 2.4 and as a separate distutils-based package. It is compatible back to
Python 2.3.

Here are the differences betweemail version 3 and version 2:

e The FeedParser class was introduced, and thHearser class was implemented in terms of the
FeedParser . All parsing there for is non-strict, and parsing will make a best effort never to raise an ex-
ception. Problems found while parsing messages are stored in the mesiedgetattribute.

e All aspects of the APl which raisedeprecationWarning s in version 2 have been removed.
These include theencoderargument to theMIMEText constructor, theMessage.add_payload()
method, theUtils.dump_address_pair() function, and the functiondJtils.decode() and
Utils.encode()

e New DeprecationWarning s have been added toGenerator.__call__ () , Message.get_-
type() , Message.get_main_type() , Message.get_subtype() , and thestrict argument to the
Parser class. These are expected to be removed in email 3.1.

e Support for Pythons earlier than 2.3 has been removed.
Here are the differences betweemail version 2 and version 1:

e Theemail.Header andemail.Charset modules have been added.

e The pickle format foMessage instances has changed. Since this was never (and still isn’t) formally defined,
this isn't considered a backward incompatibility. However if your application pickles and unpididssage
instances, be aware that @mail version 2,Message instances now have private variableharsetand
_defaulttype

2.11 Package History 23

e Several methods in thielessage class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation fddhsage class for details. The changes should be
completely backward compatible.

e The object structure has changed in the facene$sage/rfc822 content types. Iremail version 1, such a
type would be represented by a scalar payload, i.e. the container messageitipart() returned false,
get_payload() was not a list object, but a singMessage instance.

This structure was inconsistent with the rest of the package, so the object representatiesstaye/rfc822
content types was changed. émail version 2, the containatoesreturnTrue from is_multipart() ,
andget_payload() returns a list containing a singMessage item.

Note that this is one place that backward compatibility could not be completely maintained. However, if you're
already testing the return type gét_payload() , you should be fine. You just need to make sure your code
doesn’'tdo &et_payload() with aMessage instance on a container with a content typenebsage/rfc822.

e TheParser constructor'sstrict argument was added, and iarse() andparsestr() methods grew a
headersonlyargument. Thestrict flag was also added to functioesnail. message_from_file() and
email.message_from_string()

e Generator.__call__() is deprecated; usBenerator.flatten() instead. TheGenerator class
has also grown thelone() method.

e TheDecodedGenerator class in theemail.Generator module was added.

e The intermediate base clas®dBVIENonMultipart andMIMEMultipart have been added, and interposed
in the class hierarchy for most of the other MIME-related derived classes.

e The _encoderargument to theMIMEText constructor has been deprecated. Encoding now happens implicitly
based on thecharsetargument.

e The following functions in themail.Utils module have been deprecatetiimp_address_pairs() .
decode() , andencode() . The following functions have been added to the moduetke_msgid()
decode_rfc2231() , encode_rfc2231() , anddecode_params()

e The non-public functiommail.lterators._structure() was added.

2.12 Differences from mimelib

Theemail package was originally prototyped as a separate library calledtlib . Changes have been made so that

method names are more consistent, and some methods or modules have either been added or removed. The semantics
of some of the methods have also changed. For the most part, any functionality avaitabteeiib s still available

in theemail package, albeit often in a different way. Backward compatibility betweemih®elib package and

theemail package was not a priority.

Here is a brief description of the differences betweenntmelib and theemail packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been emaaijed to
In addition, the top-level package has the following differences:

e messageFromsString() has been renamed teessage_from_string()

e messageFromFile() has been renamed toessage_from_{file()
TheMessage class has the following differences:

e The methodasString() was renamed tas_string()

24 2 email — An email and MIME handling package

e The methodsmultipart() was renamed ts_multipart()

e Theget_payload() method has grown decodeoptional argument.
e The methodyetall() was renamed tget_all()

e The methodaddheader() was renamed tadd_header()

e The methodjettype() was renamed tget_type()

e The methodyetmaintype() was renamed tget_main_type()

e The methodjetsubtype() was renamed tget_subtype()

e The methodyetparams() was renamed tget_params() . Also, whereagetparams() returned a list
of strings,get_params() returns a list of 2-tuples, effectively the key/value pairs of the parameters, split on
the ‘=" sign.

e The methodyetparam() was renamed tget_param()

e The methodjetcharsets() was renamed tget_charsets()
e The methodjetfilename() was renamed tget_filename()
e The methodjetboundary() was renamed tget_boundary()

e The methodsetboundary() was renamed teet_boundary()

e The methodgetdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decoddflag of the getpayload() method.

e The method getpayloadastext() was removed. Similar functionality is supported by the
DecodedGenerator class in theemail.Generator module.

e The methodyetbodyastext() was removed. You can get similar functionality by creating an iterator with
typed_subpart_iterator() in theemail.lterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents adessage instance containing separdiessage
subparts for each header block in the delivery status notification

The Generator class has no differences in its public interface. There is a new class anthg Generator
module though, calle®ecodedGenerator which provides most of the functionality previously available in the
Message.getpayloadastext() method.

The following modules and classes have been changed:

e The MIMEBase class constructor argumentsiajor and _minor have changed tomaintypeand _subtypere-
spectively.

e Thelmage class/module has been renamedvitMEImage. The _minor argument has been renamed_to
subtype

e TheText class/module has been renamettidIEText . The _minor argument has been renamedgabtype

e The MessageRFC822 class/module has been renamedvitMEMessage. Note that an earlier version of
mimelib called this class/modulRFC822, but that clashed with the Python standard library modiaig22
on some case-insensitive file systems.

Also, theMIMEMessage class now represents any kind of MIME message with main tygssage. It takes
an optional argumensubtypewhich is used to set the MIME subtypesubtypedefaults torfc822.

4Delivery Status Notifications (DSN) are defined in RFC 1894.

2.12 Differences from mimelib 25

mimelib provided some utility functions in itaddress anddate modules. All of these functions have been
moved to theemail.Utils module.

TheMsgReader class/module has been removed. Its functionality is most closely supporteddadieline_-
iterator() function in theemail.lterators module.

2.13 Examples

Here are a few examples of how to use émeail package to read, write, and send simple email messages, as well as
more complex MIME messages.

First, let’'s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email. MIMEText import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCIl characters.

fp = open(textfile, 'rb’)

Create a text/plain message

msg = MIMEText(fp.read())

fp.close()
me == the sender’'s email address
you == the recipient's email address

msg['Subject’] = 'The contents of %s’ % textfile
msg['From’] = me
msg['To’] = you

Send the message via our own SMTP server, but don't include the
envelope header.

s = smtplib.SMTP()

s.connect()

s.sendmail(me, [you], msg.as_string())

s.close()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in a
directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we’ll need
from email.MIMEImage import MIMEImage
from email. MIMEMultipart import MIMEMultipart

COMMASPACE =, ’

Create the container (outer) email message.

msg = MIMEMultipart()

msg['Subject’] = 'Our family reunion’

me == the sender’'s email address

family = the list of all recipients’ email addresses
msg['’From’] = me

msg['To'] = COMMASPACE.join(family)

26 2 email — An email and MIME handling package

msg.preamble = 'Our family reunion’
Guarantees the message ends in a newline
msg.epilogue = "

Assume we know that the image files are all in PNG format
for file in pndfiles:
Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, 'rb’)
img = MIMEImage(fp.read())
fp.close()
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()

s.connect()

s.sendmail(me, family, msg.as_string())
s.close()

Here’s an example of how to send the entire contents of a directory as an email méssage:
#!/usr/bin/env python
""Send the contents of a directory as a MIME message.
Usage: dirmail [options] from to [to ...]*

Options:
-h / --help
Print this message and exit.

-d directory

--directory=directory
Mail the contents of the specified directory, otherwise use the
current directory. Only the regular files in the directory are sent,
and we don't recurse to subdirectories.

‘from’ is the email address of the sender of the message.

‘to’ is the email address of the recipient of the message, and multiple
recipients may be given.

The email is sent by forwarding to your local SMTP server, which then does the
normal delivery process. Your local machine must be running an SMTP server.

import sys

import os

import getopt

import smtplib

For guessing MIME type based on file name extension
import mimetypes

from email import Encoders

from email.Message import Message
from email.MIMEAudio import MIMEAudio
from email. MIMEBase import MIMEBase

5Thanks to Matthew Dixon Cowles for the original inspiration and examples.

2.13 Examples

from email. MIMEMultipart import MIMEMultipart
from email. MIMEImage import MIMEImage
from email. MIMEText import MIMEText

COMMASPACE = ', °’

def usage(code, msg="):
print >> sys.stderr, _ doc__
if msg:

print >> sys.stderr, msg

sys.exit(code)

def main():

try:

opts, args = getopt.getopt(sys.argv[1l:], 'hd:’, ['help’, 'directory="])

except getopt.error, msg:

usage(1l, msg)

dir = os.curdir
for opt, arg in opts:

if opt in (-h’, '--help’):
usage(0)

elif opt in (-d’, '--directory’):
dir = arg

if len(args) < 2:

usage(1)

sender = args[0]
recips = args[l:]

Create the enclosing (outer) message

outer

= MIMEMultipart()

outer['Subject’] = 'Contents of directory %s’ % os.path.abspath(dir)
outer[To’l] = COMMASPACE join(recips)

outer['From’] = sender

outer.preamble = ’'You will not see this in a MIME-aware mail reader.\n’
To guarantee the message ends with a newline

outer.epilogue =

for filename in os.listdir(dir):

path = os.path.join(dir, filename)
if not os.path.isfile(path):
continue
Guess the content type based on the file’'s extension. Encoding
will be ignored, although we should check for simple things like
gzip'd or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:
No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’
maintype, subtype = ctype.split('/’, 1)
if maintype == 'text’
fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)

28

2 email — An email and MIME handling package

fp.close()
elif maintype == ’'image’:
fp = open(path, 'rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()
elif maintype == ’audio”
fp = open(path, 'rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()
else:
fp = open(path, 'rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
Encoders.encode_base64(msg)
Set the filename parameter
msg.add_header('Content-Disposition’, 'attachment’, filename=filename)
outer.attach(msg)

Now send the message

s = smtplib.SMTP()

s.connect()

s.sendmail(sender, recips, outer.as_string())
s.close()

if _name__ =='_ main__"
main()

And finally, here’s an example of how to unpack a MIME message like the one above, into a directory of files:
#!/usr/bin/env python
""" Unpack a MIME message into a directory of files.
Usage: unpackmail [options] msdfile

Options:
-h [/ --help
Print this message and exit.

-d directory

--directory=directory
Unpack the MIME message into the named directory, which will be
created if it doesn't already exist.

msdfile is the path to the file containing the MIME message.

import sys
import 0s

import getopt
import errno
import mimetypes
import email

def usage(code, msg="):

2.13 Examples 29

print >> sys.stderr, _ doc___
if msg:

print >> sys.stderr, msg
sys.exit(code)

def main():
try:

opts, args = getopt.getopt(sys.argv[1l:], 'hd:’, ['help’, ’'directory="])

except getopt.error, msg:
usage(1l, msg)

dir = os.curdir
for opt, arg in opts:
if opt in (-h’, --help’):
usage(0)
elif opt in (-d’, '--directory’):
dir = arg

try:
msgfile = args[0]
except IndexError:
usage(1)

try:
0s.mkdir(dir)
except OSError, e:
Ignore directory exists error
if e.errno <> ermo.EEXIST: raise

fp = open(msdfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():
multipart/* are just containers
if part.get_content_maintype() == 'multipart”:
continue

Applications should really sanitize the given filename so that an
email message can't be used to overwrite important files

filename = part.get_filename()
if not filename:

ext = mimetypes.guess_extension(part.get_type())

if not ext:
Use a generic bag-of-bits extension
ext = "bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(dir, filename), 'wb’)
fp.write(part.get_payload(decode=1))
fp.close()

’)

if _name__ =='_ main__"
main()

30

2 emalil

— An email and MIME handling package

	1 Introduction
	2 email --- An email and MIME handling package
	2.1 Representing an email message
	Deprecated methods

	2.2 Parsing email messages
	FeedParser API
	Parser class API
	Additional notes

	2.3 Generating MIME documents
	Deprecated methods

	2.4 Creating email and MIME objects from scratch
	2.5 Internationalized headers
	2.6 Representing character sets
	2.7 Encoders
	2.8 Exception and Defect classes
	2.9 Miscellaneous utilities
	2.10 Iterators
	2.11 Package History
	2.12 Differences from mimelib
	2.13 Examples

